Evolutionary design of graph-based structures
for optical computing

Mihai Oltean, Oana Muntean

Department of Computer Science,
Faculty of Mathematics and Computer Science,
Babes-Bolyai University, Kogalniceanu 1,
Cluj-Napoca, 400084, Romania.
mihai.oltean@gmail.com
oana-muntean85Qyahoo.com
https://mihaioltean.github.io/optical

Abstract. Designing optical devices for solving NP-complete problems
is a difficult task. The difficulty consists in constructing a graph which -
when traversed by light - generates all possible solutions of the problem
to be solved. So far only few devices of this type have been proposed.
Here we suggest the use of evolutionary algorithms for solving this prob-
lem: the graphs are generated using a special Genetic Programming ap-
proach. We have tested our idea on the subset sum problem. Numerical
experiments shows the effectiveness of the proposed approach.

keywords: evolutionary algorithms, genetic programming, optical comput-
ing, unconventional computing, NP-complete

1 Introduction

The purpose of this reseach is to asses the usefulness of Evolutionary Algorithms
(EAs) [8,12,20] for designing graph-based devices for delay-based optical com-
puting systems.

A common feature of all these devices is the fact that the signals are delayed
by a certain amount of time. The existence of a solution is determined by check-
ing whether there is at least one signal which was delayed by a precise amount
of time. If we don’t find a signal at that moment it means that the problem has
no solution.

The difficulty of this approach resides in the design of a delaying system such
that the solution can simply be read at an exact moment of time [25]. Up to
now these graphs have been manually designed for only few problems: Hamil-
tonian path [5,6,9, 10,21, 22], Travelling Salesman problem [5,6,9,10], subset
sum [6, 23], Diophantine equations [16, 18], Exact Cover [24], Clique [5, 6], Ver-
tex Cover [5,6], 3-Sat [5, 6], 3D-matching [5, 6], the unbounded subset sum [17]
and Ricochet Robot [11].

Here we use a Genetic Programming [12] variant called Multi Expression
Programming (MEP) [20, 26] for automatic generation of graphs fitting the re-
quirements imposed by the optical computing. Each MEP chromosome encodes
a possible solution for the problem. Each gene of the chromosome represents
a node of the graph together with its neighbors and associated delays. When
the evaluation of individuals takes place, all possible paths for the signal are
generated.

Offspring obtained by crossover and mutation are always syntactically cor-
rect MEP individuals. Thus, no extra processing for repairing newly obtained
individuals is needed.

We exemplify our approach by evolutionary designing the graph for the sub-
set sum problem [7,23]. For this purpose we have performed several numerical
experiments with various settings for our evolutionary algorithm. Instances up to
4 numbers in the set have been successfully tackled with reasonable populations
and number of generations.

The paper is organized as follows: Section 2 describes some basic principles
of delayed based optical devices. Section 3 contains a short description of the
subset sum problem. The graph where the light is running to form a solution
is described in section 4. Section 5 contains a brief description of Evolutionary
Algorithms and Genetic Programming. Next section (6) gives a short descrip-
tion of standard Multi Expression Programming. Section 7 deeply describes the
proposed evolutionary system. It contains details about the representation, ini-
tialization, genetic operators and fitness function. Several numerical experiments
are performed in section 8. Section 9 concludes our paper.

2 The manually designed optical devices

This section describes some elements behind the delay-based optical devices used
for solving NP-complete problems. For more information the reader is asked to
read the following papers: [23,25].

The idea is based on two properties of light (signal):

— The speed of light has a limit. We can delay the ray by forcing it to pass
through an optical fiber cable of a certain length.

— The ray can be easily divided into multiple rays of smaller intensity/power.
Beam-splitters are used for this operation.

The optical devices have a graph like structure. Generally speaking one op-
eration is performed when a ray passes through a node and one operation is
performed when a ray passes through an edge.

— When passing through an arc the light ray is delayed by the amount of time
assigned to that arc.

— When the ray is passing through a node it is divided into a number of rays
equal to the external degree of that node. Each obtained ray is directed
toward one of the nodes connected to the current node.

3 The subset sum problem

We exemplify our idea with a classic NP-complete problem: the subset sum [7]
which can be simply stated as:

Given a set of positive numbers A = {aj,as,...,a,} and another positive
number B. Is there a subset of A whose sum equals B?

We focus our attention on the YES / NO decision problem. We are not in-
terested in finding the subset generating the solution. Actually we are interested
to find only if such subset does exist.

4 The graph for the subset sum

The most important part of the device is the graph which - when traversed by
light - generates all possible solutions for the problem.

In the current case that we analyze (the subset sum problem) numbers from
the given set A represent the delays induced to the signals (light) that passes
through the device. For instance, if numbers a1, az and a; generate the expected
subset, then the total delay of the signal should be a; + a3 + ar.

Thus our graph is composed of a set of nodes and a set of arcs whose length
are taken from the given set A. We also need arcs of 0 lengths whose purpose is
to avoid the use of a given number from the initial set.

Such device [23] is depicted in Figure 1. A light ray sent to start node will
have the possibility to either traverse a given arc (from the upper part of figure)
or to skip it (by traversing the arc of length 0 from the bottom of figure).

In each node (but the last one) a beam-splitter is placed which will split a
ray into 2 subrays of smaller intensity.

The device will generate all possible subsets of A. Each subset will delay one
of the rays by an amount of time equal to the sum of the lengths of the arcs in
that path.

In the graph depicted in Figure 1 the light will enter in Start node. It will
be divided into 2 subrays of smaller intensity. These 2 rays will arrive into the
second node at moments a; and 0. Each of them will be divided into 2 subrays
which will arrive in the 3" node at moments 0, a;, as,a; + as. These rays will
arrive at no more than 4 different moments.

In the destination node the rays arrive at no more than 2™ different moments.
The ray arriving at moment 0 means the empty set. The ray arriving at moment
a1 + as + ... + a, represents the full set. If there is a ray arriving at moment B
means that there is a subset of A of sum B.

5 Evolutionary Algorithms and Genetic Programming

Evolutionary Algorithms (EAs) [8] are approximation tools for solving difficult
real-world problems. They were developed under the pressure generated by the
inability of classical (mathematical) methods to solve some real-world problems.

-hﬂ

)_ﬂ
)f
)ma
)

Start
@
@
@
@
@
Destination

{te g}

[Zeyle Te ‘le)
{ Sy Tey e
[feqfeqfeyle

fEeg e ‘teq e Teyqle tte ‘e ‘le))

ey b e ey fe Te ey Ty Te Gey Ty Te fteg e
‘e Cfey e ey le Ry Te cTeyTe R R CTe e)

Fig. 1. The device for the subset sum problem. Each subset of A is generated. Skipping
arcs have 0 lengths. We have also depicted the moments when different rays arrive in
nodes. The moments are represented as sets because they might not be distinct

Many of these unsolved problems are (or could be turned into) optimization prob-
lems. Solving an optimization problem means finding of solutions that maximize
or minimize a criteria function [20].

One of the most important algorithms belonging to this class is Genetic Pro-
gramming (GP) [12-14]. Genetic Programming is widely known as the technique
which writes computer programs. Instead of evolving solutions for a particular
problem instance, GP is mainly intended for discovering computer programs able
to solve classes of problems.

Many variants of GP have been proposed in the recent years. Their aims were
various: simpler implementation, higher speed, smaller memory requirements,
the capability of working with particular hardware architectures etc. Another
motivation is given by the problems where some representations work better
than the others [26].

One of the GP variants is Multi Expression Programming (MEP) [20, 26].
This technique will be used in this paper for performing several numerical ex-
periments. In the next section we briefly describe standard Multi Expression
Programming and then we modify it for adapting it to our current purpose.

6 Multi Expression Programming

Multi Expression Programming (MEP) [20] is a Genetic Programming variant
that uses a linear representation of chromosomes. MEP individuals are strings
of genes encoding complex computer programs.
When MEP individuals encode expressions, their representation is similar to
the way in which compilers translate C' or Pascal expressions into machine code.
An example of chromosome C' using the function set F' = {4, *} and the set
of terminals T' = {a, b, ¢, d} is given below:

—_
[\)

+ ¥4+ &0 4 &R
&
o U

\]

A unique MEP feature is the ability of storing multiple solutions of a prob-
lem in a single chromosome. What we have encoded in chromosome C are the
following expressions:

Elza
By =
E4—C
Es=d

E6:C+d
E;=(a+0b)xd
Es=bx*(c+d)

Usually, the best solution is chosen for fitness assignment. When solving
symbolic regression or classification problems (or any other problems for which
the training set is known before the problem is solved) MEP has the same
complexity as other techniques storing a single solution in a chromosome.

Evaluation of the expressions encoded into a MEP individual can be per-
formed by a single parsing of the chromosome.

Offspring obtained by crossover and mutation are always syntactically correct
MEP individuals (computer programs). Thus, no extra processing for repairing
newly obtained individuals is needed.

There are 2 main differences between GP and MEP. First of all MEP encodes
multiple solutions instead of one and secondly, MEP uses a linear representa-
tion while GP has a tree based representation of solutions. Linear encoding of
computer programs means that we usually work with arrays of fixed or variable
lengths. Specifically:

1. we generate arrays of instructions, having a particular meaning,

2. we recombine them by using string-based crossover operators such as those
from binary encoding (such as one-cutting point, two cutting points, uniform
recombination etc.) [8],

3. we mutate them using operators inspired from the binary encoding or from
other representations [8].

7 The proposed MEP-based approach

Here we deeply describe the proposed evolutionary approach. We have made
several modifications to standard MEP in order to make it suitable for our
purpose.

7.1 Representation

MEP genes are strings of a variable length. The number of genes per chromosome
is fixed. This number defines the length of the chromosome. Even if this number
if fixed we still can have solutions of variable length because usually not all genes
are utilized.

Each gene represent a node and stores the arcs leaving that node (the adja-
cency list) and the length for those arcs.

Cycles can appear in this structure because there is no restriction on why
what kind of nodes appear in the adjacency list. This makes the fitness function
computationally expensive and difficult to compute.

There is still one natural restriction: a node cannot appear multiple times in
the adjacency list of another node. A node may appear in its own adjacency list.

Example

Consider a representation where the numbers on the left positions stand for
gene labels. Labels do not belong to the chromosome. They represent the node
index.

Since all nodes are identical (contain a beam splitter) we don’t need a function
set as in the standard MEP.

The set of terminals is made of a set of nodes and the possible lengths for
the arcs connecting the current node with node from its adjacency list.

Suppose that we deal with a problem with a set of 4 numbers: A = {a1, as, a3, a4}.
In this case the terminal set could be:

T =1{1,2,3,...,a1,az2,a3,a4,0}, where 1,2, 3, ... are the nodes and a1, ag, as, as,0
are the arcs’ length. The number of nodes employed by our solution is not known
the beginning. The maximal number of nodes is equal the chromosome length.
We do provide a large initial chromosome length.

The length of each arc is given right after a node.

Choosing the length for each arc is a difficult task. For some problems (such
as the subset sum) the lengths are taken directly from the problem’s input, but
for some other cases (take for instance the Hamiltonian path [21]) the lengths
have complicated formulas: 2" — 2¢, where 0 < 5 < n. In this case we also need
to use Genetic Programming for generating complex mathematical formulas.
However, for the case currently analyzed we will simplify this aspect by using
only some values taken from the problem input.

An example of chromosome C' is given below:

3, a2, 5,0

4,a1,2,0,6, ag

6,0

1, as, 2, ai, 5, as

2, (o7}

14, a4, 3,0

This chromosome must be interpreted as follows:

ST

— The maximal number of nodes in a solution is 6. However, any number
between 1 and 6 can be the actual solution since not all nodes must be used.

— Node 1 has 2 out nodes: 3 and 5. The arc (1,3) has length ay and arc (1,5)
has length 0.

— Node 2 has 3 out nodes: 4, 2 and 6. The arc (2,4) has length a1, arc (2,2) has
length 0 and arc (2,6) has length a4. Note here that 2 has an arc to itself.

— Node 3 has 1 out node: 6. The arc (3,6) has length 0.

— Node 4 has 3 out nodes: 1, 2 and 5. The arc (4,1) has length aq, arc (4,2)
has length a; and arc (4,5) has length as.

— Node 5 has 1 out node: 2. The arc (5,2) has length ay.

— Node 6 has 2 out nodes: 4 and 3. The arc (6,4) has length a4 and arc (6,3)
has length 0.

As explained in section 2 each device has a start node and a destination node.
In our case the start node is node 1 and the destination node will be computed
during the fitness evaluation.

7.2 Initialization

Generation of chromosomes is done randomly. For each node we randomly choose
the number of nodes in its adjacency list and then we randomly generate each
node in the list. After each node we randomly choose the length of the arc
connecting that node with its predecesor.

7.3 Fitness assignment

During fitness evaluation we compute how good the current chromosome is.

For the subset sum problem which is investigated here we want to generate
all possible subsets of the given set.

A perfect solution is that one which contains a destination node in which
arrive delayed rays encoding all subsets of the given set. A less perfect solution
is the one for which not all subsets are generated. This is why a natural way to
define the fitness is to count how many subsets have been generated. 2" is the
best fitness possible while 0 is the worst fitness possible.

For computing the fitness we have no choice but to simulate the signal passing
through the device. Of course, this operation requires an exponential amount of
memory because the number of signals grows exponentially. Partial results are
stored similarly with Dynamic Programming [3].

Also, for each signal we have to store its entire path. When the signal is
divided by the beam-splitters each subsignal will inherit the information carried
by its parent signal.

Because we want to limit the amount of computer resources involved in this
operation we have imposed the following constrains:

— When the total delay of a given signal exceeds a certain threshold we stop
propagating that signal. In the case of the subset sum problem we stop when
the delay of a signal is larger than B. It makes no sense to continue since we
are interested only in finding a subset of sum B.

— Because we allow arcs of length 0, we can have a huge number of divisions
of the signal without increasing the total delay of that signal. In this case
we have imposed a limit on the total number of divisions that a signal can
have.

The problem now is which node will be the destination node. There is neither
practical nor theoretical evidence that one of the nodes is better than the others.
Moreover, Wolpert and McReady [30] with their well known theorems for No
Free Lunch for Search and Optimization proved that we cannot use the search
algorithm’s behavior so far for a particular test function to predict its future
behavior on that function.

Preserving the MEP basic-idea with multiple solutions in the same chromo-
some we say again that the fitness of the entire chromosome is set as the fitness
of the best solution encoded by that chromosome. In our case the fitness is given
by the best destination node (in which arrive the highest number of signals en-
coding subsets of A) in that device. There is no extra cost of doing that because
when the signal was propagated through the graph it is propagated through all
reachable nodes.

Note that if some other signals not encoding subsets arrive in a node, the
quality of that node is decreased correspondingly. Thus, we can have negative
fitnesses too.

In is obvious that some parts of a MEP chromosome are not used. Some GP
techniques, like Linear GP, remove non-coding sequences of chromosome during
the search process. As already noted [4] this strategy does not give the best
results. The reason is that sometimes, a part of the useless genetic material has
to be kept in the chromosome in order to maintain population diversity.

Other techniques such as Cartesian GP (CGP) [15] employ a different strat-
egy for selecting the nodes which provide the output: they simply evolve these
nodes as part of the chromosome. This is also good, but during numerical ex-
periments we have noticed that selecting the best solution found works better
than evolving it.

7.4 Search operators

The search operators used within MEP algorithm are crossover and mutation.
These search operators preserve the chromosome structure.

Crossover By crossover two parents are selected and are recombined.
Two variants of recombination have been considered and tested within our
MEP implementation: one-point recombination and uniform recombination.

One-point recombination

One-point recombination operator in MEP representation is similar to the
corresponding binary representation operator. One crossover point is randomly
chosen and the parent chromosomes exchange the sequences at the right side of
the crossover point.

Example

Consider the parents C; and Cs given below. Choosing the crossover point
after position 3 two offspring, O; and O; are obtained as given in Table 1.

Uniform recombination

During the process of uniform recombination, offspring genes are taken ran-
domly from one parent or another.

10

Table 1. MEP one-point recombination.

Parents Offspring

(&3] Co O, O

1: 3, a2, 5,0 1: 2,0 1: 3, a», 5, 0 1: 2,0

2:4,a1,2,0,6,as |(2:3,a2,1,0 2: 4,a,2,0,6,a4 [2:3,a2,1,0

3:6,0 3: 6, a1 3:6,0 3: 6, a1

4: 1, agz, 2, al, 5, az |[4: 4, ag, 2, al, 1, ag 4: 4, ag, 2, ai, 1, ag 4: 1, agz, 2, ai, 5, as

5: 2, a4 5: 5, as 5: 5, aq 5: 2, ag

6: 4, a4, 3,0 6: 1, a3z 6: 1, agz 6: 4, a4, 3,0
Example

Let us consider the two parents C; and Cs given below. The two offspring
O and O4 are obtained by uniform recombination as given in Table 2.

Table 2. MEP uniform recombination.

Parents Offspring

Cl CQ 01 02

1: 3, a2, 5,0 1: 2,0 1: 3, a2, 5, 0 1: 2,0
2:4,a1,2,0,6,as [2:3,a2, 1,0 2:3,a2,1,0 2: 4, a1, 2,0, 6, as
3:6,0 3: 6, a1 3: 6, a1 3:6,0

4: 1, as, 2, a1, 5, az [4: 4, a2, 2, a1, 1, as ||4: 4, a2, 2, a1, 1, a2 |4: 1, a2, 2, a1, 5, a3
5: 2, a4 5: 5, aq 5: 2, ag 5: 5, aq

6: 4, a4, 3,0 6: 1, a3 6: 1, a3 6: 4, a4, 3, 0

Mutation Each symbol in the chromosome may be the target of the mutation
operator. Some symbols in the chromosome are changed by mutation.

The number of nodes in the adjacency list of each node can be changed. Also
the length associated to each arc can be changed.

Example

Consider the chromosome C' given below. If the boldfaced symbols are se-
lected for mutation an offspring O is obtained as given in Table 3.

11

Table 3. MEP mutation

C O

1: 3, a2, 5,0 1: 3,22, 5,0, 4, ay
2:4,a1,2,0,6, ag 2: 4, a1, 2, as
3:6,0 3:6,0

4: 1, agz, 2, ai, 5, as 4: 1, agz, 2, as, 5, as
5: 2, ay 5: 2, aq, 1, as

6: 4, a4, 3, 0 6: 4, a4, 3, 0

7.5 MEP algorithm

Standard MEP algorithm uses steady-state evolutionary model [29] as its un-
derlying mechanism.

The MEP algorithm starts by creating a random population of individuals.
The following steps are repeated until a given number of generations is reached:
Two parents are selected using a standard selection procedure. The parents are
recombined in order to obtain two offspring. The offspring are considered for
mutation. The best offspring O replaces the worst individual W in the current
population if O is better than W.

The variation operators ensure that the chromosome length is a constant of
the search process. The algorithm returns as its answer the best solution evolved
along a fixed number of generations.

The standard MEP algorithm is outlined below:

Standard MEP Algorithm
S1. Randomly create the initial population P(0)

S,. for t = 1 to Max_Generations do
Ss. for k =1to |P(t)| /2 do

S4. p1 = Select(P(t)); // select one individual from the current popula-
tion
Ss. p2 = Select(P(t)); // select the second individual
Se. Crossover (pi, p2, 01, 02); // crossover the parents p; and pa
// the offspring 01 and oy are obtained
Sq. Mutation (01); // mutate the offspring oy
Ss. Mutation (02); // mutate the offspring o2
So. if Fitness(o1) > Fitness(o2)
S10. then if Fitness(o1) > the fitness of the worst individual
in the current population
Si1. then Replace the worst individual with oq;
Sia. else if Fitness(o2) > the fitness of the worst individual

in the current population
Si3. then Replace the worst individual with oo;

12

514. endfor
S15. endfor

8 Numerical experiments

In this section we perform several numerical experiments for evolving graph
structures for optical computing devices. Subset sum problem with sets of 3 and
4 numbers are used. For larger sets we can design a solution by generalizing from
the smaller sets.

The parameters of the MEP algorithm are given in Table 4.

Table 4. The parameters for the MEP algorithm used for discovering solutions for the
subset sum problem with 3 and 4 numbers.

Parameter Value

Population size 500

Number of generations 50

Chromosome length 8

Maximal divisions allowed per signal 10

Mutation probability 0.2

Crossover type Uniform

Crossover probability 0.9

Selection Binary tournament
Number of runs 30

We have performed 30 independent runs with different seeds because evolu-
tionary algorithms use random numbers and a single run is not conclusive.

For the subset sum problem with 3 nodes the success rate was 90%. That
is in 27 out of 30 runs we have obtained a perfect solution (all 23 subsets have
been generated in the destination node).

For the subset sum problem with 4 nodes the success rate was 36%. That
is in 11 out of 30 runs we have obtained a perfect solution (all 2% subsets have
been generated in the destination node). It is obvious that the difficulty of the
problem will increase as the size of the set increases.

In almost all cases the standard design (see Figure 1) was obtained. However,
in some particular runs, some other strange designs were obtained (which are not
presented here due to the space limitation). We expected to obtain such designs
because usually the evolution can follow a path which is not always the logical
one. However, the strange designs were not as efficient (in the number of nodes
and arcs) as the standard design. This is why we have not focused too much on
analyzing them.

13
9 Conclusions and future work

Here we have used evolutionary algorithms as an automatic tool for designing

graphs for optical delay-based systems. Numerical experiments have shown good

results for several small instances of the subset sum problem. Large instances

can be easily solved by generalizing the design obtained in the experiments.
Further work directions are focused on:

— Improving the speed of MEP by using Sub Machine Code GP [27, 28]. Exper-
iments performed in [27] have shown that speed of GP was increased more
than 1 order of magnitude. This will help us to solve larger instances of the
problem.

— Improving the search by using Automatically Defined Functions (ADFs) [13].
This will help us to solve larger instances due to the generalization ability
of ADFs.

— Using Genetic Programming for generating the length of arcs required by
the device. Some other problems, such as the Hamiltonian path, use complex
formulas for expressing the length based on the values given as input.

— Analyzing the relationship between the success rate and different parameters
of the algorithm (such as the population size, number of generations, search
operators probability etc). This could help us to solve larger instances of the
problem.

Acknowledgment

This work was supported by grant CNCSIS-IDEI-543/2007.
The source code for Multi Expression Programming can be downloaded from
https://mepx.github.io.

References

1. Aaronson, S.: NP-complete problems and physical reality. ACM SIGACT News
Complexity Theory Column, March. ECCC TR05-026, quant-ph/0502072 (2005)

2. Banzhaf, W., Nordin, P., Keller, E. R., Francone, F. D.: Genetic Programming -
An Introduction, Morgan Kaufmann, San Francisco, CA (1998)

3. Bellman, R.: Dynamic Programming, Princeton, Princeton University Press, New
Jersey, (1957)

4. Brameier, M., Banzhaf, W.: A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining, IEEE Transactions on Evolutionary
Computation, Vol. 5, pp. 17-26, IEEE Press, NY (2001)

5. Dolev, S. Nir, Y.: Optical Implementation of Bounded non Deterministic Turing
Machine, Patent Filed May 2003 in Israel, May 2004 USA (2004)

6. Dolev, S., Fitoussi, H.: The Traveling Beams, Optical Solutions for Bounded NP-
Complete Problems, Fourth International Conference on Fun with Algorithms
(FUN2007),LNCS 4475, pp. 120-134 (2007)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Garey, MR., Johnson, DS.. Computers and intractability: A guide to NP-
Completeness. Freeman & Co, San Francisco, CA (1979)

Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, MA (1989)

Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Problem.
Opt. Express, Vol. 15, 10473-10482 (2007)

Haist, T., Osten, W.: An Optical Solution For The Traveling Salesman Prob-
lem:erratum. Opt. Express, Vol. 15, 12627-12627 (2007)

Haist, T., Osten, W.: Ultra-fast digital optical arithmetic using waveoptical com-
puting, OSC 2008, LNCS 5172, pp. 33-45 (2008)

Koza, J. R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, (1992)

Koza, J. R.: Genetic Programming II: Automatic Discovery of Reusable Subpro-
grams, MIT Press, Cambridge, MA (1994)

Koza, J. R. et al.: Genetic Programming III: Darwinian Invention and Problem
Solving, Morgan Kaufmann, San Francisco, CA (1999)

Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In Proceedings of the
37 International Conference on Genetic Programming (EuroGP2000), R. Poli, J.F.
Miller, W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty (Editors),
LNCS 1802, Springer-Verlag, Berlin, pp. 15-17 (2000)

Muntean, O.: Optical Solutions for NP-complete problems, graduation thesis, Fac-
ulty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca,
Romania, defended 3"¢ of July (2007)

Muntean, O., Oltean, M.: Using light for solving the unbounded subset-sum prob-
lem, International Journal of Innovative Computing, Information and Control, Vol.
5, Issue 8, pp. 2159-2167, (2009)

Muntean, O., Oltean, M.: Deciding whether a linear Diophantine equation has
solutions by using a light-based device, (submitted) (2008)

Nordin, P.: A Compiling Genetic Programming System that Directly Manipulates
the Machine Code, K. E. Kinnear, Jr. (editor), Advances in Genetic Programming,
pp. 311-331, MIT Press (1994)

Oltean M, Grosan C.: Evolving Evolutionary Algorithms using Multi Expression
Programming, The 7" European Conference on Artificial Life, Dortmund, 14-17
September, Banzhaf W, (editor), LNAI 2801, pp. 651-658, Springer-Verlag, Berlin
(2003)

Oltean, M.: A light-based device for solving the Hamiltonian path problem. Un-
conventional Computing, Calude C. (et al.) (Eds), LNCS 4135, Springer-Verlag,
217-227 (2006)

Oltean, M.: Solving the Hamiltonian path problem with a light-based computer,
Natural Computing, Springer-Verlag, Vol. 7, Issue 1, pp. 57-70, (2008)

Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based de-
vice, Natural Computing, Springer-Verlag, Vol. 8, Issue 2, pp. 321-331 (2009)
Oltean, M., Muntean, O.: Exact Cover with light, New Generation Computing,
Springer-Verlag, Vol. 26, Issue 4, pp. 329-346 (2008)

Oltean, M., Muntean, O.: Solving NP-Complete Problems with Delayed Signals: An
Overview of Current Research Directions, in proceedings of the 1°* International
Workshop on Optical SuperComputing, LNCS 5172, Springer-Verlag, pp. 115-128
(2008)

Oltean, M., Grosan, C., Diosan, L., Mihaila, C.: Genetic Programming with lin-
ear representation: a survey, International Journal on Artificial Intelligence Tools,
World Scientific, Vol. 19, Issue 2, pp. 197-238 (2009)

27.

28.

29.

30.

15

Poli R., Langdon W B.: Sub-machine Code Genetic Programming, in Advances
in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O’Reilly, P. J.
Angeline, Eds. Cambridge:MA, MIT Press, chapter 13, (1999)

Poli, R., Page, J.: Solving High-Order Boolean Parity Problems with Smooth Uni-
form Crossover, Sub-Machine Code GP and Demes, Journal of Genetic Program-
ming and Evolvable Machines, Kluwer, pp. 1-21 (2000)

Syswerda, G.: Uniform Crossover in Genetic Algorithms, Proceedings of the 3™
International Conference on Genetic Algorithms, Schaffer, J.D., (editor), MKP,
CA, pp. 2-9 (1989)

Wolpert, D.H., McReady, W.G.: No Free Lunch Theorems for Optimisation, IEEE
Transaction on Evolutionary Computation, Vol. 1, pp. 67-82 (1997)

