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ABSTRACT

A new model for automatic generation of Evolutionary Al-
gorithms (EAs) by evolutionary means is proposed in this
paper. The model is based on a simple Genetic Algorithm
(GA). Every GA chromosome encodes an EA, which is used
for solving a particular problem. Several Evolutionary Al-
gorithms for function optimization are evolved by using the
considered model. Numerical experiments show that the e-
volved Evolutionary Algorithms perform similarly and some-
times even better than standard approaches for several well-
known benchmarking problems.

Categories and Subject Descriptors

I.2.6 [Learning]; I.2.8 [Problem Solving, Control Meth-
ods and Search]

General Terms

Algorithms

Keywords

Genetic Algorithms, Evolutionary Algorithms, Function Op-
timization.

1. INTRODUCTION
Evolutionary Algorithms (EAs) [5, 6] are new and power-

ful tools used for solving difficult real-world problems. They
have been developed in order to solve some real-world prob-
lems that the classical (mathematical) methods failed to
successfully tackle. Many of these unsolved problems are (or
could be turned into) optimization problems. The solving of
an optimization problem means finding solutions that max-
imize or minimize a criteria function [5, 6, 21].

Many Evolutionary Algorithms have been proposed for
dealing with optimization problems. Many solution repre-
sentations and search operators have also been proposed and
tested within a wide range of evolutionary models. There

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

are several natural questions to be answered in all these
evolutionary models: What is the optimal population size?
What is the optimal individual representation? What are the
optimal probabilities for applying specific genetic operators?
What is the optimal number of generations before halting the
evolution?

A breakthrough arose in 1995 when Wolpert and McReady
unveiled their work on No Free Lunch (NFL) theorems for
Search [19] and Optimization [20]. The No Free Lunch
theorems state that all the black-box algorithms have the
same average performance over the entire set of optimiza-
tion problems. (A black-box algorithm does not take into
account any information about the problem or the particular
instance being solved.) The magnitude of the NFL results
stroke all the efforts for developing a universal black-box op-
timization algorithm capable of solving all the optimization
problems in the best manner. Since we cannot build an EA
able to solve best all problems we have to find other ways to
construct algorithms that perform very well for some par-
ticular problems. One possibility (explored in this paper) is
to let the evolution to discover the optimal design and pa-
rameters for the EA used for solving a particular problem.

In their attempt for solving problems, men delegated com-
puters to develop algorithms capable of performing certain
tasks. The most prominent effort in this direction is Genetic
Programming (GP) [7], an evolutionary technique used for
breeding a population of computer programs. Instead of
evolving solutions for a particular problem instance, GP is
mainly intended for discovering computer programs capable
of solving particular classes of optimization problems.

There are many such approaches in literature concerning
GP. Noticeable effort has been dedicated for evolving de-
terministic computer programs capable of solving specific
problems such as symbolic regression [7], classification [3]
etc.

Instead of evolving such deterministic computer programs,
we will evolve a full-featured evolutionary algorithm (i.e. the
output of our main program will be an EA capable of per-
forming a given task). Thus, we will work with EAs at two
levels: the first (macro) level consists in a steady-state GA
[17] which uses a fixed population size, a fixed mutation
probability, a fixed crossover probability etc. The second
(micro) level consists in the solutions encoded in a chromo-
some of the first level EA. A solution represents an evolved
sequence of genetic operations and their parameters which
are performed by an EA for solving a particular problem.

The rules employed by the evolved EAs during of a genera-
tion are not pre-programmed. These rules are automatically

2442



discovered by the evolution. The evolved EA could be a gen-
erational one (the generations do not overlap) or it could be
a steady state EA or a mixture of these two models.

This research was motivated by the need of answering
several important questions concerning EAs. The most im-
portant question is “Can Evolutionary Algorithms be auto-
matically synthesized by using only the information about
the problem being solved?” [14]. And, if yes, which are the
genetic operators that have to be used in conjunction with
an EA (for a given problem)? Moreover, we are also in-
terested to find the optimal (or near-optimal) sequence of
genetic operations (selections, crossovers and mutations) to
be performed during a generation of an EA for a particular
problem. For instance, in a standard GA the sequence is the
following: selection, recombination and mutation. However,
how do we know that this scheme is the best for a partic-
ular problem (or problem instance)? And if this scheme is
so good, which are the optimal values for crossover and mu-
tation probabilities or for other parameters involved by the
genetic operators? We better let the evolution to find the
answer for us.

The paper is organized as follows. An overview of the
related work in the field of evolving EAs is briefly presented
in Section 2. The model used for evolving EAs is described in
Section 3. Various numerical experiments are performed in
Section 4. Several EAs for function optimization are evolved
in that section. Further research directions are suggested in
Section 5.

2. RELATED WORK
Several approaches evolve genetic operators for solving

difficult problems [2, 4, 16, 18]. For instance, in his paper
on Meta-Genetic Programming, Edmonds [4] used two pop-
ulations: a standard GP population and a co-evolved pop-
ulation of operators that act on the main population. Note
that all these approaches use a fixed evolutionary algorithm,
which is not changed during the search.

Spector and Robinson [15] describes a language called
Push, which supports a new, self-adaptive form of evolu-
tionary computation called auto constructive evolution. An
experiment was reported for symbolic regression problems.
The conclusion was that “Under most conditions the pop-
ulation quickly achieves reproductive competence and soon
thereafter improves in fitness.” [15].

Several attempts for evolving Evolutionary Algorithms us-
ing similar techniques were performed in the past. A gen-
erational EA was evolved [11] by using the Linear Genetic
Programming (LGP) technique [3]. A non-generational EA
was evolved [13] by using the Multi Expression Program-
ming (MEP) technique [13]. MEP was used again for evolv-
ing only the kernel of an EA [12]. Numerical experiments
have shown [12, 13] that the evolved EAs perform similarly
and sometimes even better than the standard evolutionary
approaches with which they are compared.

3. GAS FOR EVOLVING EAS
The model proposed for evolving evolutionary algorithms

is described in this section.
We deal with evolutionary algorithms at two levels: a

macro EA and a micro EA. The macro EA is actually a GA
manipulating a sequence of genetic operators and parame-
ters employed by the micro EA during a generation.

In what follows we will denote the operations and the
chromosomes involved into the macro level EA by using the
macro or M prefix notation: MChromosome, MGeneration,
MCrossover, MMutation and those involved into the micro
level EA by using the micro or µ prefix notation: µChro-
mosome, µGeneration, µMutation, µCrossover.

3.1 Individual representation for evolving EAs
In order to use GAs for evolving EAs we have to modify

the structure of a GA chromosome. The macro level chromo-
some represents an evolutionary program which affects an
array of individuals (the population involved into the µEA).

A GA chromosome (a macro-chromosome) used for evolv-
ing µEAs consists in two main parts: a part is used for speci-
fying the operations that are performed into the µEA (micro
crossover, micro mutation, micro append and micro replace-
ment); the other chromosome part encodes the parameters
of the µEA (the crossover and mutation probabilities). Both
parts of the GA chromosome are subject to evolution.

The first part of the macro-chromosome represents the
modifications performed into the population of the micro
EA. These modifications can regard the operations performed
for obtaining new micro individuals (crossover and mutation
- called in what follows chromosome-based operations) or
the operations performed in order to change the population
composition (append a new individual into the population or
replace a chromosome with other new chromosome - called
population-based operations). The operations about popula-
tion are performed each time when a new micro individual
is obtained (by a crossover or by a mutation operation).

Each gene from the first part of a macro chromosome has
two values: the first value is used for storing the chromosome-
based operations and the second value of a gene stores the
population-based operations.

Usually, three types of genetic operators may appear into
an EA. These genetic operators are: Selection - selects the
best solution among several already existing solutions, Cross-
over - recombines two existing solutions and Mutation -
varies an existing solution. We will call these operations
micro Selection (µSelection), micro Crossover (µCrossover)
and micro Mutation (µMutation) because they are performed
into the µEA.

Because mutation operator and crossover operator need
one and, respectively, two argument(s), we must perform
these operations into an EA after minimum one or two se-
lection(s). For avoiding these constraints, the selection pro-
cedure will be embedded (as a parameter) into the perturba-
tion operators. More specifically, we have two major types
of chromosome-level instructions in a modified GA chromo-
some. These instructions are:

off1 = µCrossover (µSelection(), µSelection());
off2 = µMutation (µSelection()).
Remarks:

(i) The µCrossover operator always generates a single off-
spring from two parents in our model. Crossover oper-
ators generating two offspring may be designed to fit
our evolutionary model as well.

(ii) The µSelection operator acts as a binary tournament
selection. The best of two individuals is always ac-
cepted as the result of the selection.

(iii) The µCrossover and the µMutation are problem de-
pendent. For instance:
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– if we want to evolve a µEA with binary represen-
tation for function optimization we may use the
set of genetic operators having the following func-
tionality: µCrossover – recombines two parents
using one cutting point crossover [5], µMutation
– bit-wise mutation [5].

– if we want to evolve a µEA for solving the TSP
problem [9] we may use DPX as a µCrossover
operator and 2-opt as a µMutation operator [8].

When a new µindividual is obtained by performing one
of previous presented operations, we have to decide what
to do with it. In our model we have two possibilities: to
append it to the current population or to overwrite the worst
individual in the current population.

Therefore, the second value of each gene from a macro
chromosome will encode what will happen with the offspring
obtained by recombination or mutation procedure. More
specifically, we have two major types of population-level in-
structions in a macro chromosome: µAppend(off) and µRe-
place(off).

The number of genes from the first part of a macro chro-
mosome is equal to the number of individuals (n) from the
evolved EA population. In this way, after performing all
the instructions encoded into the macro chromosome, it is
possible to have into the current micro population no more
than n new individuals. Note that in the current population
there are already n individuals from the previous generation.

The second part of a GA chromosome contains the values
of different parameters used by the µEA (whose instructions
are encoded into the first part of the GA individual). These
parameters could be the micro crossover probability (µpc),
the micro mutation probability (µpm). Therefore, the sec-
ond part of the macro chromosome will have more genes,
each of them containing a value for a parameter of the µEA.

A GA chromosome C, storing an evolutionary algorithm
is the following:

Gene values
g1 o1 = µMutation(µSelect()) µAppend(o1)
g2 o2 = µCrossover(µSelect(), µSelect()) µReplace(o2)
g3 o3 = µCrossover(µSelect(), µSelect()) µAppend(o3)
g4 o4 = µCrossover(µSelect(), µSelect()) µReplace(o4)
g5 o5 = µMutation(µSelect()) µReplace(o5)
g6 o6 = µCrossover(µSelect(), µSelect()) µAppend(o6)
g7 µpc

g8 µpm

Because each value of a gene from the first part of a macro
chromosome (g1 → g6 from the previous example) encodes
one of two possible of micro genetic operations (µCrossover
or µMutation for the first gene value and µAppend or µReplace
for the second gene value), we can use some binary codes
for these operations: 0 – µCrossover, 1 – µMutation, 0 –
µAppend, 1 – µReplace.

Using this representation for a GA chromosome, we can
apply some standard macro recombination and macro mu-
tation operators. For instance, we can use the one-cutting
point crossover [6] and a bit-wise mutation [6] (or other bi-
nary representation-based crossover and mutation) for the
first part of a macro chromosome and an arithmetical cross-
over [5, 10] and a Gaussian mutation [5, 21] (or other genetic

operators specific for real encoding) for the second part of a
macro chromosome.

Since our purpose is to evolve an entire EA we have to
add a wrapper loop around the genetic operations that are
executed during an EA generation. More than that, each
EA starts with a random population of individuals. Thus,
the program must contain some instructions that randomly
initialize the first generation of the micro EA.

More than that, because after each µMutation or µCross-
over it is possible to add a new individual into the popu-
lation, we need to select the survivors of the current gen-
eration. They will form the next generation. Therefore,
after all the micro genetic operations (encoded into the GA
chromosome) are performed, we will sort the entire micro
population and the best n micro individuals will form the
new generation (where n is the size of the evolved micro
population).

The µEA that corresponds to instructions encoded into
chromosome C is given by the Algorithm 1:

Algorithm 1 GA chromosome-program – a µpopulation
with 6 individuals

Randomly initialize the population();{This operation is
not encoded into the GA chromosome}
FitnessPopulation()
for g=1 to MaxGenerations do

off1 = µMutation(µSelection()); µAppend(off1);
off2 = µCrossover(µSelection(),µSelection());
µReplace(off2);
off3 = µCrossover(µSelection(),µSelection());
µAppend(off3);
off4 = µCrossover(µSelection(),µSelection());
µReplace(off4);
off5 = µMutation(µSelection());
µReplace(off5);
off5 = µCrossover(µSelection(),µSelection());
µAppend(off5);
FitnessPopulation()
SortPopulation();
Truncation();

end for

Remark : The initialization function, the for cycle, the
sort and truncation functions will not be affected by the
genetic operators. These parts are kept unchanged during
the search process.

3.2 Fitness assignment
We deal with EAs at two different levels: a micro level

representing the EA encoded into a GA chromosome and a
macro level GA, which evolves program-individuals. Macro
level GA execution is bounded by known rules for GAs (see
[5]).

In order to compute the fitness of a GA individual we
have to compute the quality of the evolved µEA encoded in
that chromosome. For this purpose the µEA is run on the
particular problem being solved.

Roughly speaking the fitness of a macro individual equals
the fitness of the best solution generated by the µEA en-
coded into that GA chromosome. But since the µEA en-
coded into a macro chromosome uses pseudo-random num-
bers it is very likely that successive runs of the same µEA
will generate completely different solutions. This stability
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problem is handled in a standard manner: the µEA is exe-
cuted (run) more times (100 µruns are in fact executed in all
the experiments performed for evolving µEAs for function
optimization) and the fitness of a GA chromosome is the
average of the fitness of the best micro chromosome (from
the last generation of the µEA) over all the runs.

The optimization type (minimization/maximization) of
the macro level GA is the same as the optimization type of
the micro level EA. In our experiments, we have employed a
minimization relation (finding the minimum of a function).

3.3 The Model used for evolving EAs
We use steady-state evolutionary model [17] as underly-

ing mechanism for our macro GA implementation. The GA
starts by creating a random population of macro individ-
uals (programs). The following steps are repeated until a
given number of generations is reached: two parents are se-
lected using a standard selection procedure; the parents are
recombined in order to obtain an offspring; the offspring is
considered for mutation; the offspring off replaces the worst
individual worst in the current population if off is better
than worst (see the Algorithm 2).

Algorithm 2 The macro GA used for evolving µEAs

Randomly initialize the macro population MPop;
Evaluate the macro population MPop;
while not stop condition do

p1 = MSelection(MPop);
p2 = MSelection(MPop);
MCrossover(p1, p2, off );
MMutation(off );
MFitness(off ); {Run the EA encoded into the off for
solving a particular problem}
if off is better than worst individual worst from MPop

then
Replace worst with off

end if
end while

Macro Initialization Each part of a macro GA individ-
ual is generated according to its type:

• each gene from the first part of a macro chromosome
will be initialize with a random binary value

• each gene from the second part of the macro chromo-
some will be a random real value from [0, 1] range.

Macro Crossover An example of a macro crossover tak-
ing two parents and generating an offspring is given below:

10 0010
µp1

c µp1
m01 0110

=⇒
10 1011

µp∗
c µp∗

m01 0001
11 1011

µp2
c µp2

m10 0001

For the first part of the macro chromosome, the cut-
ting point is randomly chosen after the second position and
the chromosomes exchange genetic material after this point.
The genes from the second part of a macro offspring will be
computed as a convex combination of corresponding parent
genes:

µp∗
c = α × µp1

c + (1 − α) × µp2
c

and
µp∗

m = α × µp1
m + (1 − α) × µp2

m.

Macro Mutation Each gene from the first part is changed
(with a given probability) into its complement. The genes
from the second part will be affected by a random Gaussian
variable:

101011
µp∗

c µp∗
m =⇒

0 0 01 11
µp+

c µp+
m010001 1 1 11 01

with: µp+
c = µp∗

c + N(0, 0.01) and µp+
m = µp∗

m + N(0, 0.01),
where N(µ, σ) is a function that generates a normally dis-
tributed one-dimensional random number with mean µ and
standard deviation σ.

Note that macro Crossover and macro Mutation oper-
ators are not problem dependent. Their functionality is to
combine and mutate some information from the macro chro-
mosome: the macro offspring will encode a new order for
applying the genetic operations into the micro EA and the
values of some parameters involved into the evolved EA.

4. NUMERICAL EXPERIMENTS
In this section several numerical experiments for evolving

EAs are performed. Two evolutionary algorithms for func-
tion optimization are evolved: one uses real encoding for
the micro chromosomes and another one uses the binary
representation for the micro individuals. For assessing the
performance of the evolved EAs, several numerical experi-
ments with two classical GAs for function optimization are
also performed and the results are compared.

4.1 Test Functions
Ten test problems f1 − f10 (given in Table 1) are used in

order to asses the performance of the evolved EAs. Func-
tions f1 − f6 are unimodal test function. Functions f7 − f10

are highly multi-modal (the number of the local minima in-
creases exponentially with the problem dimension [21]). In
all experiments the definition domain of every function has
five dimensions (n = 5).

4.2 Experimental Results
In this section we evolve an EA for function optimiza-

tion and then we asses its performance. A comparison with
several classical EAs is performed further in this section.

An important issue concerns the representation of the so-
lutions evolved by the µEA (algorithm which is encoded
into a macro GA chromosome) and the specific genetic op-
erators used for this purpose. The solutions evolved by the
µEA are represented using either real values or binary val-
ues [5]. Thus, each chromosome of the evolved µEA is a
fixed-length array of real values (see Experiments 1 and 2)
or binary values (see Experiments 3 and 4).

4.2.1 Experiment 1

An Evolutionary Algorithm for function optimization with
real-encoding is evolved in this experiment.

There is a wide range of Evolutionary Algorithms that can
be evolved by using the technique described above. Since
the evolved µEA has to be compared with another algo-
rithm (such as standard GA [5] or a steady state GA [17]),
the chromosome representation and the parameters of the
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Table 1: Test functions used in our experimental study. The parameter n is the space dimension (n = 5 in
our numerical experiments) and fmin is the minimum value of the function.

Test function Domain fmin

f1(x) =
nP

i=1

(i · x2
i ). [-10, 10]n 0

f2(x) =
nP

i=1

x2
i . [-100, 100]n 0

f3(x) =
nP

i=1

|xi| +
nQ

i=1

|xi|. [-10, 10]n 0

f4(x) =
nP

i=1

 
iP

j=1

x2
j

!
. [-100, 100]n 0

f5(x) = max{|xi|, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1P
i=1

100 · (xi+1 − x2
i )

2 + (1 − xi)
2. [-30, 30]n 0

f7(x) = 10 · n +
nP

i=1

(x2
i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e
−b

vuut nP
i=1

x2
i

n − e

P
cos(c·xi)

n + a + e. [-32, 32]n, a = 20, b = 0.2, c = 2π. 0

f9(x) = 1

4000
·

nP
i=1

x2
i −

nQ
i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f10(x) =
nP

i=1

(−xi · sin(
p

|xi|)) [-500, 500]n -n∗ 418.98

evolved µEA should be similar to those of the algorithm
used for comparison. In Experiment 2 we will compare the
performance of the evolved µEA with the performance of
several classical EAs using 50 individuals and 50 genera-
tions.

The solutions generated by the µEA are represented using
real values [5]. Thus, each chromosome of the evolved µEA
is a fixed-length array of real values. In what follows we will
denote the µEA evolved in this experiment by Real-based
evolved EA or shortly RevoEA.

The parameters of the macro GA are given in Table 2.
The macro chromosome contains the genetic operations (and
their order) performed into the µEA and the crossover and
mutation probabilities for the µEA. Moreover, the first part
length of a macro chromosome gives the number of individ-
uals from the micro population.

Table 2: The parameters of the macro GA algorithm
used for Experiment 1.

Parameter Value
Number of generations 100
Population size 100

Crossover type
I part One cutting point
II part Uniform arithmetical

Crossover probability 0.8

Mutation type
I part Strong
II part Gaussian

Mutation probability 0.1
Selection Binary tournament

This experiment serves our purpose for studying the per-
formance of the evolved EA taking into account various
macro chromosome sizes (in fact only the number of genes

from the first part of a chromosome is changed). Actually,
we evolved more real encoding EAs taking into account dif-
ferent sizes for the population involved into the µEA.

In all tests performed in this experiment the µEA is e-
volved by using the first function f1 as training problem.
Figure 1 presents the evolution of the performance of the
best chromosome from the macro-GA population along with
the number of macro generations and for different number
of genes into the first part of a macro chromosome.

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

Number of MacroGenerations

F
it

n
e

s
s

20 30 40 50

Figure 1: The relationship between the fitness of the
best individual in each generation (of the macro GA)
and the number of macro generations. Results are
given on a logarithmic scale. Different µpopulation
sizes are considered. Results are average over set of
10 runs, each set being performed for different pop-
ulation sizes (20, 30, 40 and 50 micro individuals).

Figure 1 shows that the macro GA is able to evolve an
EA for solving optimization problems. The quality of the
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evolved EA improves as the search process advances. More-
over, we can observe in Figure 1 the improvements of the
RevoEA along with the number of generations, but also
along with the increasing of gene number from the first part
of a macro chromosome.

4.2.2 Experiment 2

This experiment serves our purpose of comparing the best
evolved µEA obtained in the previous experiment with two
classical GAs: a standard generational GA with elitism gen-
GAe [5] and with a steady-state GA [17] ssGA.

In this experiment both classical algorithms (genGAe and
ssGA) and the evolved µEA (evoEA) use a real representa-
tion of the µChromosomes. Therefore we will denote these
algorithms by: RgenGAe, RssGA and RevoEA.

For assessing the performance of the RevoEA, RgenGAe
and RssGA we will use all the test functions given in Table 1.
RevoEA uses the design evolved in the previous experiment.
In order to make a fair comparison we have to perform the
same number of function evaluations in both evolved EA and
standard GAs. The µEA uses a population with 50 individ-
uals, which are evolved during 50 generations. Therefore,
for the RgenGAe we use the same number of µgenerations
and the same µpopulation size and for the RssGA we used
the same number of function evaluations (µNoGenerations
× µPopSize). Moreover, all the algorithms (RevoEA, Rgen-
GAe, RssGA) perform the same crossover type and the same
mutation type using the same probabilities. These proba-
bilities are taken from the best macro chromosome obtained
during evolution in the last generation of the macro GA
(from the best GA-program evolved into the Experiment 1).
The values of these parameters are more exactly presented
in Table 4.

The results of these comparisons are presented in Table 3.

Table 4: The parameters of a real-encoding EA.
Parameter Value
Population sizea 50
Individual encoding real fixed-length array
Number of generations 50
Crossover type Uniform, with α = 0.5
Crossover probability 0.9984
Mutation Gaussian, with σ = 0.01
Mutation probability 0.7674
Selection Binary Tournament

aNote that the population size also represents the
number of genes from the first part of a macro GA
chromosome used for evolving real-based µEA

Taking into account the average values we can see in Table
3 that the evolved µEA significantly performs better than
the standard generational GA in all cases.

Regarding the performance comparison of RevoEA vs.
RssGA and taking into account the average values, we can
see in Table 3 that the RevoEA significantly performs bet-
ter than the RssGA in all the cases with only one exception
(problem f7).

Analyzing the differences between the performance of evolved
µEA and those of the other GAs (RgenGAe and RssGA) we
can see that the RevoEA is closer to the RssGA than to the
RgenGAe.

4.2.3 Experiment 3

An Evolutionary Algorithm using binary encoding for func-
tion optimization is evolved in this experiment. For training
purposes we use again the first test problem f1 whose defi-
nition domain is [−10, 10].

Each micro chromosome of the evolved EA is a fixed-
length array of binary strings. By initialization, a point
within the definition domain is randomly generated. Uni-
form crossover [1] and strong (probabilistic bit-wise) muta-
tion [5] are used. In uniform crossover, every allele is ex-
changed between the two random individual pairs with a
certain probability, known as the swapping probability (in
general, this probability ps is 0.5). For performing a bit-wise
mutation we alter each gene independently with a probabil-
ity pm. In our model, the crossover probability (µpc) and
the mutation probability (µpm) are stored into the second
part of the macro chromosome.

0.00001

0.0001

0.001
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0.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Macro Generations

M
e

a
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b
e

s
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20 30 40 50

Figure 2: The relationship between the fitness of
the best individual (a µEA with binary encoding)
in each generation (of the macro GA) and the num-
ber of macro generations. Results are given on a
logarithmic scale. Different µpopulation sizes are
considered. Results are average over set of 10 runs,
each set being performed for different population
sizes (20, 30, 40 and 50 micro individuals).

The parameters of the macro GA are the same with those
used in Experiment 1 (the values for these parameters are
presented in Table 2). The micro EA representation is the
major difference between the current experiment and the
previous experiments: unlike the first experiment where the
evolved µEA has used a real representation, now, the evolved
micro algorithm is using a binary encoding of its chromo-
somes. Therefore, each micro chromosome is a binary string
with 20 elements. The others micro parameters are the same
with those used in Experiment 1: more µindividuals are
evolved during 50 µgenerations.

This experiment serves our purpose of studying the perfor-
mance of the evolved µEA based on a binary representation
taking into account various macro chromosome sizes. Actu-
ally, we evolved more µEAs which use the binary represen-
tation for their chromosomes taking into account different
sizes for the µpopulation. The evolved µEA is trained on the
first function f1 in all tests performed in this experiment.

We tested more values for the number of genes from the
first part of a macro chromosome (or, with other words,
more sizes for the micro population). In Figure 2 we present
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Table 3: Results of applying the evolved µEA (RevoEA), the Standard generational GA with elitism (Rgen-

GAe) and the Steady state GA (RssGA) for the considered test problems. The algorithms use the real
representation for their chromosomes. Avg stands for the mean best solution over 100 runs and StdDev

stands for standard deviation over 100 runs.

RevoEA RgenGAe RssGAe
Avg StdDev Avg StdDev Avg StdDev

f1 1.18E-01 1.13E-01 2.32E-01 2.42E-01 1.41E-01 1.61E-01
f2 9.11E+00 8.58E+00 2.61E+01 1.96E-01 2.20E+01 8.36E+00
f3 3.08E-01 3.13E-01 1.13E+00 3.94E-01 8.89E-01 2.16E-01
f4 3.54E+01 2.65E+01 6.30E+01 1.99E-01 4.45E+01 2.89E+01
f5 5.01E+00 1.38E+00 7.70E+00 1.90E-02 5.50E+00 6.54E-01
f6 3.94E+02 6.63E+02 4.55E+02 1.62E+01 4.33E+02 3.78E+02
f7 4.42E+00 3.01E+00 7.57E+00 5.05E+00 2.11E+00 1.81E+00
f8 2.89E+00 1.32E+00 6.20E+00 4.96E-01 6.31E+00 1.13E+00
f9 7.53E-01 2.88E-01 1.13E+00 2.08E-01 1.58E+00 6.56E-01
f10 -1.48E+03 5.08E+02 -8.81E+02 1.31E+02 -1.03E+03 2.04E+02

the fitness evolution for the best individual from the macro
GA population along with the number of generations for
different numbers of genes into the first part of the macro
chromosome (20, 30, 40 and 50 genes or µindividuals). We
can observe the improvements of the BevoEA along with the
number of generations, but also along with the increasing of
genes number from the first part of a macro chromosome.
Note that we have modified just the length of the first part
of a GA chromosome (the second part, reserved for µpm and
µpc, rests the same).

4.2.4 Experiment 4

The next experiment serves our purpose of comparing the
Evolved EA (obtained in Experiment 3) with a generational
GA with elitism and with a steady state GA. Again, for a fair
comparison, we must perform the same number of function
evaluations. Having this in view we count how many new
individuals are created during a generation of the evolved
EA. Thus, genGAe and ssGA will use a main population of
50 individuals which are evolved during 50 generations (as
the evolved µEA already used during the training stage on
the first problem).

Moreover, because the compared algorithms are using the
same binary representation of genetic individuals, we will
denote them as BevoEA, BgenGAe, BssGA.

For assessing the performance of the evolved µEA we have
use the test functions given in Table 1. Moreover, all the
algorithms (BevoEA, BgenGAe, BssGA) involve the uniform
crossover [1] and the bit-wise mutation [6] using the same
probabilities. These probabilities are taken from the best
macro chromosome obtained during the evolution in the last
generation of the macro GA (the best GA-program evolved
into the Experiment 3) - see Table 6.

The results of this experiment are presented in Table 5.
Taking into account the average values we can see in Table

5 that the evolved µEA significantly performs better than
the standard generational GA in 8 cases.

Moreover, the solution from Table 5 indicate that the bi-
nary evolved µEA significantly performs better than the
steady-state GA only for the third problem f3, but if we
considered the best solution found in one of these 100 runs,
the BevoEA determines a better solution than the BssGA
for six problems.

Table 6: The parameters of a binary-encoding EA.
Parameter Value
Population size 50
Individual encoding Binary string
Number of generations 50
Crossover type Uniform
Crossover probability 0.812412
Mutation Bit-wise
Mutation probability 0.0297436
Selection Binary Tournament

5. CONCLUSIONS AND FURTHER WORK
In this paper, GAs have been used for designing EAs.

A detailed description of the proposed approach has been
given allowing researchers to apply the method for evolving
EAs that could be used for solving problems in their fields
of interest.

The proposed model has been used for evolving EAs for
function optimization. Numerical experiments emphasize
the robustness and the efficacy of this approach. The evolved
EAs perform similar and sometimes even better than some
standard approaches in the literature.

Some other questions should be answered about the E-
volved Evolutionary Algorithms. Some of them are: Which
is the optimal selection procedure? Are all the instructions
effective? Are all the genetic operators suitable for the par-
ticular problem being solved? What is the optimal number
of genetic instructions performed during a generation of the
Evolved EA?

In order to evolve high quality EAs and assess their per-
formance an extended set of training problems should be
used. This set should include problems from different fields
such as: function optimization, symbolic regression, TSP,
classification etc. Further efforts will be dedicated to the
training of such algorithm which should to have increased
generalization ability.

In our experiments only populations of fixed size have
been used. Another extension of the proposed approach will
take into account the scalability of the population size.
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Table 5: Results of applying the evolved µEA (RevoEA), the Standard generational GA with elitism (Rgen-

GAe) and the Steady state GA (RssGA) for the considered test problems. The algorithms use the binary
representation for their chromosomes. Avg stands for the mean best solution over 100 runs and StdDev

stands for standard deviation over 100 runs.

BevoEA BgenGAe BssGAe
Avg StdDev Avg StdDev Avg StdDev

f1 9.66E-05 1.70E-04 6.98E-02 7.20E-02 6.24E-05 6.79E-05
f2 2.67E-02 9.12E-02 1.19E+01 1.23E+01 9.61E-03 1.23E-02
f3 9.13E-03 7.20E-03 3.18E-01 1.71E-01 9.45E-03 5.11E-03
f4 2.54E+02 4.33E+02 4.31E+01 5.14E+01 7.41E+01 2.10E+02
f5 8.41E-01 9.44E-01 3.75E+00 1.94E+00 2.23E-01 1.53E-01
f6 2.97E+02 5.97E+02 3.21E+02 3.99E+02 1.25E+02 3.65E+02
f7 6.18E+00 3.47E+00 6.30E+00 2.62E+00 4.54E+00 2.38E+00
f8 9.63E-01 1.12E+00 2.97E+00 8.02E-01 2.39E-01 5.80E-01
f9 2.73E-01 1.61E-01 7.44E-01 2.21E-01 1.64E-01 7.73E-02
f10 -1.96E+03 1.06E+02 -2.02E+03 7.06E+01 -2.01E+03 8.30E+01

Further numerical experiments will analyze the relation-
ship between the macro GA parameters (such as Population
Size, Chromosome Length, Mutation Probability etc.) and
the ability of the evolved EA to find the optimal solutions.
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