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Abstract

Manual design of Evolutionary Algorithms (EAs) capable of performing very well on a wide range of problems
is a difficult task. Another possibility is to let the evolution to discover the optimal structure and the parameters
of the algorithm. Since we cannot build an EA capable of solving all the problems in the best way, we have to find
other manners to construct algorithms that perform very well for some particular problems. One possibility (which
is explored in this paper) is to let the evolution discover the optimal structure and parameters for the EA used
for solving a specific problem. To this end a new model for automatic generation of EAs by evolutionary means is
proposed in this paper. The model is based on a simple Genetic Algorithm (GA). Every GA chromosome encodes
an EA, which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization
are generated by using the considered model. Numerical experiments show that the evolved EAs perform similarly
and sometimes even better than standard approaches for several well-known benchmarking problems.

1 Introduction

Evolutionary Algorithms (EAs) [1, 2] are heuristics that mimic the Darwinian principles of evolution in order to solve
complex optimization problems. They perform well in solving real-world problems, especially for which the fitness
landscape is complex. EAs have been applied in a variety of domains including numerical function optimization,
combinatorial optimization, adaptive control and machine learning. Many evolutionary models, representations and
search operators have also been proposed. There will always be questions related to the usefulness of a particular
scheme for solving a wide range of problems.

A breakthrough arose in 1995 when Wolpert and McReady unveiled their work on the No Free Lunch (NFL)
theorems for Search [3] and Optimization [4]. The No Free Lunch theorems state that all the black-box algorithms
have the same average performance over the entire set of optimization problems (a black-box algorithm does not
take into account any information about the problem or the particular instance which is being solved.). The NFL
results undermine all the efforts for developing a universal black-box optimization algorithm capable of solving all the
optimization problems in the best manner.

Our approach is to evolve a full-featured EA (i.e. the output of our main program will be an EA capable of
performing a given task). Thus, we will work with EAs at two levels: the first (macro) level consists in a steady-state
EA [5] which uses a fixed population size, a fixed mutation probability, a fixed crossover probability etc. The second
(micro) level consists in the solutions encoded in a chromosome of the first level EA. A solution represents an evolved
sequence of genetic operations and their parameters, which are performed by an evolutionary algorithm for solving a
particular problem.

The rules employed by the evolved EAs during a generation are not pre-programmed. These rules are automatically
discovered by the evolution. The evolved EA could be a generational one (the generations do not overlap), a steady-
state evolutionary algorithm, or a mixture of these two models. In this context, our research was motivated by the
need to answer several important questions concerning Evolutionary Algorithms. The most important questions are:

• Can Evolutionary Algorithms be automatically synthesized by using only the information about the problem which
is being solved? [6].

• Which are the genetic operators that have to be used in conjunction with an EA (for a given problem)?

• Which is the optimal (or near-optimal) sequence of genetic operations (selections, crossovers and mutations)
to be performed during a generation of an Evolutionary Algorithm for a particular problem. For instance, in a
standard GA the sequence is the following: selection, recombination and mutation. However, how do we know
that this scheme is the best for a specific problem (or problem instance)?

• Which are the optimal values for crossover and mutation probabilities or for other parameters involved by the
genetic operators?
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We had better let the evolution find the answer for us.
The paper is organized as follows. An overview of the related work in the field of evolving EAs is made in section

2. The model used for evolving EAs is presented in section 3. Test problems are described in section 4. Various
numerical experiments are performed in section 5. Several EAs for function optimization are also evolved in that
section. Scalability issues are discussed in section 6. A numerical comparison with other methods for evolving EAs is
performed in section 7. Generalization ability is tested in section 8. Differences among the methods used for evolving
EAs are discussed in section 9. A brief analysis over the evolution of EAs is given in section 10. Further research
directions are suggested in section 11. Finally, section 12 concludes our paper.

2 Related work

The ability of an evolutionary algorithm to adapt its search strategy during the optimisation process is a key concept in
evolutionary computation [7]. Several approaches evolve genetic operators for solving difficult problems [8, 9, 10, 11].
In [8] were introduced two adaptive crossover operations, Selective Self-Adaptive Crossover and Self-Adaptive Multi-
Crossover, both of which were designed to evolve crossover points for sub-trees. The results of the experiments indicate
that a static weight system for crossover points in Genetic Programming is not as desirable as an adaptive system.
In his paper on Meta-Genetic Programming, Edmonds [9] used two populations: a standard Genetic Programming
population and a co-evolved population of operators that act on the main population. Note that all these approaches
use a fixed EA, which is not changed during the search process.

Spector and Robinson [12] described a programming language designed for evolutionary computation (called Push),
which supports a self-adaptive form called auto constructive evolution. In such system, the evolving programs construct
their own children including the variation mechanisms and the evolutionary process itself. This means that each evolve
program also contain code for reproduction and diversification. When used within a standard genetic programming
system Push provides several forms of self-adaptation including the automatic evolution of modules and program
architecture. The obtained system – called Push Genetic Programming – was used for symbolic regression problems
[12].

Kantschik et al. have introduced the evolution of operators for Genetic Programming by means of Genetic Pro-
gramming. Specifically, meta-evolution of recombination operators in graph-based Genetic Programming is applied
and compared to other methods for the variation of recombination operators in graph-based Genetic Programming
[13].

Several attempts at evolving EAs using similar techniques were performed in the past. A generational EA was
evolved [14, 15] by using the Linear Genetic Programming (LGP) technique [16, 17]. A non-generational EA was
evolved [18] by using the Multi Expression Programming (MEP) technique [18]. MEP was used again for evolving
only the kernel of an EA [19]. A new model for automatic generation of Evolutionary Algorithms (EAs) by evolutionary
means was proposed in [20]. The model is based on a simple Genetic Algorithm (GA). Numerical experiments have
shown [14, 18, 19, 20] that the evolved EAs perform similarly and sometimes even better than the standard evolutionary
approaches with which they are compared. In the next subsections we briefly described several previous approaches
that are the most related to the current one.

2.1 Linear Genetic Programming based approach

Linear Genetic Programming (LGP) [16, 17, 21] uses a specific linear representation of computer programs. It evolves
programs of an imperative language (like C ) instead of the tree-based Genetic Programming expressions of a functional
programming language (like LISP).

An LGP individual is represented by a variable-length sequence of simple C ) language instructions. Instructions
operate on one or two indexed variables (registers) r or on constants c from predefined sets. The result is assigned to
a destination register, e.g. ri = rj ∗ c. An example of an LGP program is the following:

Algorithm 1 LGP Program(double r[8])
Randomly initialize the registers();

// repeat for a number of generations
for k=0 to MaxGenerations do

r[0] = r[5] * r[3];
r[7] = r[3] - r[6];
r[4] = sin(r[2]);
r[2] = r[0] + r[2];
r[6] = r[1] * 45;
r[2] = r[4] - r[3];
r[1] = sin(r[6]);
r[3] = exp(r[5]);

end for
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Instead of evolving such deterministic computer programs, a full-featured evolutionary algorithm (i.e. the output
of the main program will be an EA capable of performing a given task) is evolved. Thus, the evolutionary principles
are applied at two levels: the first (macro) level consists in a steady-state EA [22] which uses a fixed population size, a
fixed mutation probability, a fixed crossover probability etc. The second (micro) level consists in the solutions encoded
in a chromosome of the first level EA.

For the first (macro) level EA an evolutionary model similar to LGP [16, 17, 21] is utilised. The structure of the
standard LGP has been adapted for evolving EAs [15]. Instead of working with registers, the LGP program modifies
an array of individuals (the population of the micro level EA). Suppose that the array of individuals (the population)
which will be modified by an LGP program is denoted by Pop.

The set of function symbols involve in LGP algorithm consists of genetic operators that may appear in an evolu-
tionary algorithm. There are usually three types of such genetic operators: Selection, Crossover and Mutation.

The Initialization operator is used to generate the micro population and it is not evolved like all the other operators.
The LGP statements are considered genetic operations executed during an EA generation:

• Selection(i1, i2) - selects the better solution among two already existing solutions i1 and i2

• Crossover(i1, i2) - recombines two already existing solutions i1 and i2,

• Mutation(i1) - varies an already existing solution i1.

Note that i1 or i2 refer to the potential solutions to be identified by the micro-level algorithm for the problem that
must be solved. In this case, the micro algorithm performs a numerical optimisation of a given function. Therefore, a
solution is represented as an array of real values, the length of this array being given by the dimension number of the
problem (by the problem size).

Since the purpose was to evolve a generational EA, a wrapper loop has been added around the genetic operations
that are executed during an EA generation. Even more, each EA starts with a random population of individuals.
Thus, the LGP program must contain some instructions that initialize the first generation of individuals.

An example of an LGP chromosome encoding an EA is given below:

Algorithm 2 LGP-based EA Program(Chromosome Pop[8])
Randomly initialize the population();

// repeat for a number of generations
for k=0 to MaxGenerations do

// starting point of the evolved part
Pop[0] = Mutation(Pop[5]);
Pop[7] = Selection(Pop[3], Pop[6]);
Pop[4] = Mutation(Pop[2]);
Pop[2] = Crossover(Pop[0], Pop[2]);
Pop[6] = Mutation(Pop[1]);
Pop[2] = Selection(Pop[4], Pop[3]);
Pop[1] = Mutation(Pop[6]);
Pop[3] = Crossover(Pop[5], Pop[1]);

// ending point of the evolved part
end for

This evolved part refers to the following operations performed in a generation of the evolved EA: first of all,
the chromosome Pop[5] is mutated and the resulted offspring replaces the first individual (Pop[0]). Than, the best
chromosome between Pop[3] and Pop[6] is selected and it replaces the last chromosome (Pop[7]) and so on. Because
variable size populations are involved in such mechanism, not all the individuals are updated. For instance, in the
previous example Pop[5] is never updated.

Note that only the operations inside the for instruction are evolved. Everything else is kept fixed.
In order to compute the quality of the LGP chromosome the EA encoded there is run on the particular problem

which is being solved. Roughly speaking, the fitness of an LGP individual is equal to the fitness of the best solution
generated by the evolutionary algorithms encoded in that LGP chromosome.

2.2 Multi Expression Programming based approach

Multi Expression Programming (MEP) [18, 23] is a Genetic Programming variant that uses linear chromosomes
for solution encoding. A unique MEP feature is its ability of encoding multiple solutions of a problem in a single
chromosome.

Substrings of a variable length represent MEP genes. The number of genes per chromosome is constant. This
number defines the length of the chromosome. Each gene encodes a terminal or a function symbol. A gene that
encodes a function includes pointers towards the function arguments. Function arguments always have indices of
lower values than the position of the function itself in the chromosome. A tree can be constructed for each gene by
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following the function pointers. The entire chromosome is seen as a forest of trees. This representation is similar to
Cartesian Genetic Programming [24].

A unique feature of MEP is the ability to choose which sub-tree will provide the solution of the problem. Usually
the best sub-tree encoded in an MEP chromosome is chosen to represent the chromosome.

Consider a representation where the numbers on the left positions stand for gene labels. Labels do not belong to
the chromosome, as they are provided only for explanation purposes. For this example the following sets of functions
F = {+, ∗} and terminals T = {a, b, c, d} are utilised. An example of a MEP chromosome using the sets F and T is
given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 5
8: + 2, 6

Phenotypic translation of a MEP chromosome is obtained by parsing the chromosome top-down. The previous
chromosome encodes 8 potential expressions:

E1 = a
E2 = b
E3 = E1 + E2 = a + b
E4 = c
E5 = d
E6 = E4 + E5 = c + d
E7 = E3 * E5 = (E1 + E2) * d = (a + b) * d
E8 = E2 + E6 = b + (E4 + E5) = b + (c + d)

The chromosome fitness is usually defined as the fitness of the best expression encoded by that MEP chromosome.
There have been designed two ways for evolving EAs by using MEP. The first one (synthesized in Section 2.2.1)

generates full non-generational EAs. The second one (described in Section 2.2.2) generates only a small sequence of
instructions, which are repeatedly utilised in order to create new individuals.

2.2.1 Evolving full EAs

In order to use MEP for evolving EAs, the sets of terminal and function symbols have been redefined in [18].
As in the LGP-based model, the previously presented operators (Selection, Crossover and Mutation) are utilised,

but the Initialization operator is evolved also. The above-mentioned operators along with their meaning are listed
below:

• Initialization - randomly initializes a solution,

• Selection(i1, i2) - selects the better solution among two already existing solutions i1 and i2

• Crossover(i1, i2) - recombines two already existing solutions i1 and i2,

• Mutation(i1) - varies an already existing solution i1.

These operators will act as symbols that may appear in an MEP chromosome. The only operator that generates
a solution independent of the already existing solutions is the Initialization operator. This operator composes the
terminal set. The other operators are considered function symbols.

An MEP chromosome, storing an EA, can look like this:

Algorithm 3 MEP-based EA Chromosome
1: Initialization // Randomly generates a solution
2: Initialization // Randomly generates another solution
3: Mutation 1 // Mutates the solution stored on position 1
4: Selection 1, 3 // Selects the better solution from those stored on positions 1 and 3
5: Crossover 2, 4 // Recombines the solutions on positions 2 and 4
6: Mutation 4 // Mutates the solution stored on position 4
7: Mutation 5 // Mutates the solution stored on position 5
8: Crossover 2, 6 // Recombines the solutions on positions 2 and 6
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This MEP chromosome encodes multiple EAs (in fact 8 EAs). They are given in Table 1. Each EA is obtained
by reading the chromosome bottom-up, starting with the current gene and following the links provided by the func-
tion pointers. The best EA encoded in a chromosome represents that chromosome (it provides the fitness of that
chromosome).

The complexity of the EAs encoded in an MEP chromosome varies from very simple (EAs made up of a single
instruction – see EA1 or EA2) to very complex (sometimes using all the genes of the MEP chromosome – see EA7 or
EA8). This is very useful because the complexity of the EA that is claimed in order to solve a problem is not known
in advance. The required algorithm could be very simple (in this case, the simplest individuals encoded by MEP are
very useful) or it could be very complex (in this case, the most complex EAs are taken into account).

The algorithm proposed in [18] is a non-generational one (there are no generations). There is only one sequence of
genetic operations.

Table 1: Evolutionary Algorithms encoded in the MEP chromosome C
EA1 EA2 EA3 EA4

i1= 1: Initialization i1= 2: Initialization i1= 1: Initialization i1 = 1: Initialization
i2= 3: Mutation(i1) i2= 3: Mutation(i1)

i3= 4: Selection(i1,i2)

EA5 EA6 EA7 EA8

i1= 1: Initialization i1= 1: Initialization i1= 1: Initialization i1= 1: Initialization
i2= 2: Initialization i2= 3: Mutation(i1) i2= 2: Initialization i2= 2: Initialization
i3= 3: Mutation(i1) i3= 4: Selection(i1, i2) i3= 3: Mutation(i1) i3= 3: Mutation(i1)
i4= 4: Selection(i1, i3) i4= 6: Mutation(i3) i4= 4: Selection(i1, i3) i4= 4: Selection(i1, i3)
i5= 5: Crossover(i2, i4) i5= 5: Crossover(i2, i4) i5= 6: Mutation(i4)

i6= 7: Mutation(i5) i6= 8: Crossover(i2, i5)

The quality of an EA encoded in an MEP chromosome is computed as in the case of the LGP approach (see Section
2.1).

2.2.2 Evolving EAs with patterns

Instead of evolving an entire EA it is possible to evolve only the heart (the kernel) of the algorithm represented by
the sequence of instructions that is repeatedly applied in order to generate new offspring by taking information from
the current population [19].

In the previously described models (MEP-based and LGP-based), the search space of the EAs was huge. The
time needed to train a human-competitive evolutionary algorithm could take between several hours and several days.
Instead of evolving an entire EA, the model proposed in [19] evolves a small piece of code that will be used repeatedly
in order to obtain new individuals. Most of the known evolutionary schemes use this form of evolution. For instance,
in a standard GA, the following piece of code is successively applied until the new population is filled:

p1 = Selection(); {choose randomly two individuals and return the better of them in p1 }
p2 = Selection(); {choose randomly two individuals and return the better of them in p2 }
c = Crossover(p1, p2);
c = Mutation(c);
Fitness(c); {compute the fitness of the individual c }
Copy c in the next generation;

The main advantage of this approach is its reduced complexity: the size of the pattern is considerably smaller
than the size of the entire EA which was evolved in [14, 18]. The patterns in an EA could be assimilated with the
Automatically Defined Functions (ADFs) in Genetic Programming [25].

In the model proposed in [19] the pattern was represented as an MEP computer program whose instructions are
executed during the EA evolution.

The Initialization operator was not involved, as the purpose was to evolve a small piece of code that would be used
in order to generate a new population based on the old one. This operator is applied only once, at the moment of
population initialization. The other three operators, Selection, Crossover and Mutation, are used within the evolved
pattern:

• Selection() - selects a solution from the old population. This operation is implemented as a binary tournament
selection: two individuals are randomly chosen and the best of them is the result of selection.

• Crossover(i1, i2) - recombines two already existing solutions i1 and i2,
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• Mutation(i1) - varies an already existing solution i1.

This model involved the following sets:

• the function set F = {Crossover, Mutation}
• the terminal set is T = {Selection}.

The model proposed in [19] replaces the terminal set by the new terminal symbol {Selection} which is specific to
this purpose. Also, the function set is replaced by {Crossover, Mutation}. An example of the MEP pattern is given
below:

1: Selection();
2: Selection();
3: Crossover 1, 2 ;
4: Mutation 3 ;

Please note that, unlike the previous model, the Selection operator has no argument in this case.
This MEP chromosome should be interpreted as follows:

• An individual (let us denote it by ind1) is selected from the current population by using a binary tournament
mechanism - instruction Selection()

• Another individual (let us denote it by ind2) is selected from the current population by using a binary tournament
mechanism - instruction Selection()

• Individuals ind1 and ind2 are recombined using a representation-dependent crossover. A new individual ind3 is
obtained - instruction Crossover 1, 2

• Individual ind3 is mutated. The result of the mutation is a new individual denoted by ind4 - instruction Mutation
3.

After this briefly review of other adaptive EAs described in literature, in the next section we will explain the details
about our model for evolving EAs.

3 Genetic Algorithms for evolving Evolutionary Algorithms

The model proposed for evolving EAs is described in this section. We deal with EAs at two levels: a macro-level EA
and a micro-level EA. The macro EA is a GA manipulating a sequence of genetic operators utilized by the micro EA
during a generation. In what follows, we will denote the operations, the chromosomes and the parameters involved in
the macro level EA by using the macro or M prefix notation and those involved in the micro level EA by using the
micro or µ prefix notation:

Object Notations for the macro level Notations for the micro level
Chromosome MChromosome µChromosome
Generation MGeneration µGeneration
Crossover MCrossover µCrossover
Mutation MMutation µMutation
Selection MSelection µSelection
Population MPop µPop
Size of population MPopSize µPopSize
Number of generations MNoOfGenerations µNoOfGenerations
Crossover probability Mpc µpc

Mutation probability Mpm µpm

3.1 Individual representation for evolving EAs

In order to use GAs for evolving EAs we have to modify the structure of a GA chromosome. The macro level
chromosome is an evolutionary program which manipulates an array of individuals (the population of the µEA).
The macro-chromosome, used for evolving µEAs, consists in an array of values that specify the operations that are
performed by the µEA.

There are 2 types of operations performed inside a µEA:

• Crossover and mutation that generate new individuals. These operations are called Chromosome creation oper-
ations.
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• Append and replace that tells what to do with the newly created individuals. These operations are called
Population altering operations.

Each gene of a macro chromosome has two values: the first value is used in order to store the chromosome creation
operations, while the second value of a gene refers to the population altering operation.

3.1.1 Chromosome creation operations

As we already mentioned, three types of genetic operators may usually appear in an EA. These genetic operators are:

• Selection - selects a solution from several existing solutions,

• Crossover - recombines two existing solutions in order to generate one offspring and

• Mutation - varies an existing solution.

We will call these operations micro Selection (µSelection), micro Crossover (µCrossover) and micro Mutation
(µMutation) because they are performed inside the micro EA (µEA).

Crossover requires two input parameters (the parents) and mutation requires one input parameter (an individual).
The parameters for these operators are usually provided by the selection procedure. This is why we embed in the calls
of Crossover and Mutation a call of Selection function. More specifically, we have three major types of chromosome
creation operations in a modified GA chromosome. These instructions are:

off1 = µCrossover (µSelection(), µSelection()); { Crossover two individuals obtained by selection }
{ procedure. The result will be a new individual. }

off2 = µMutation (µSelection()); { Mutate the individual obtained by selection }
{ procedure. The result will be a new individual. }

off3 = µMutation (µCrossover (µSelection(), µSelection())); { Crossover two individuals (obtained by }
{ selection procedure) and mutate the offspring. }
{ The result will be a new individual. }
{ In what follows this operation is denoted by }
{ µCrossMutation. }

Remarks:

(i) The µSelection operator acts as a binary tournament selection. The better of two individuals is always accepted
as the result of the selection.

(ii) The µCrossover and the µMutation are representation-dependent. For instance:

– if we want to evolve a µEA with binary representation for function optimization we may use the set of genetic
operators having the following functionality: µCrossover – one cutting point crossover [2], µMutation – bit-
wise mutation [2]

– if we want to evolve a µEA with real representation for function optimization we may use the set of genetic
operators having the following functionality: µCrossover – uniform arithmetical crossover [26], µMutation
– Gaussian mutation [27], [28]

– if we want to evolve a µEA for solving the Travelling Salesmen Problem [29] we may use DPX as a µCrossover
operator and 2-opt as a µMutation operator [30].

(iii) The µCrossover operator in our model always generates a single offspring from two parents. Still, crossover
operators generating two offspring may be designed in order to fit our evolutionary model.

(vi) The µCrossover and µMutation operators are applied with specific probabilities. If the conditions for crossover/mutation
are not met, the offspring will be equal to (one of) the parent(s).

3.1.2 Population altering operations

When a new µIndividual is obtained by performing one of previously presented operations, we have to decide what to
do with it. In our model, we have three possibilities:

• append it to the current population (µAppend),

• overwrite the worst individual in the current population (µReplaceWorst) or
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• replace the current individual (the parent) with the new µindividual (µReplaceCurrent).

These possibilities have been chosen in order to match some well-known evolutionary schemes. Table 2 shows the
operations performed in our evolved EA along with the source of inspiration for them. If one of the schemes is better
than the other is, then our algorithm will evolve in that direction.

Table 2: The population altering operations along with an existing similar scheme. Note that a perfect matching
between the operations performed in our evolved EA and the exact sequence of instructions performed in a particular
evolutionary scheme: Steady-State GA (SSGA), Generational GA (GA) or Evolutionary Strategy (ES)) is not possible
due to the constrains imposed by our model.
Operation Explanation Existing scheme
µAppend(off); Append the new individual off (obtained by µCrossover or µMutation) GA, EP

to the population
µReplaceWorst(off); Replace the worst individual from the population worst with the SSGA

new individual off (obtained by µCrossover or µMutation) if off is
better than worst

µReplaceCurrent(off); Replace the parent (or the best parent) with the
new individual off (obtained by µCrossover or µMutation) if off is (1+1)ES
better than its parent

3.1.3 How to form the next generation

Because, after each µCrossover or µMutation, a new individual can be added to the population, we need to select the
survivors of the current generation. They will form the next generation. The current population can increase in size,
since the append operation could be involved in the schema of the evolved algorithm. After the creation of µPopSize
individuals we have to move to the next generation. We have inserted a flag (called next gen flag) in our evolved EA
which tell us how to form the next generation. This is done in 2 ways (according to the flag value):

• 0 - the new population is formed from the newly created individuals. This is specific to generational GAs.

• 1 - the best µPopSize individuals from the current population (which contains more than µPopSize individuals
due to the effect of µAppend) oepration form the new generation.

This flag was evolved like all other genes in the MChromosome.

3.1.4 The structure of the evolved EA

A GA chromosome C, storing an evolutionary algorithm is the following:

Gene # Gene values
1 off1 = µMutation(µSelection()) µAppend(off1)
2 off2 = µCrossover(µSelection(), µSelection()) µReplace(off2)
3 off3 = µCrossover(µSelection(), µSelection()) µAppend(off3)
4 off4 = µMutation(µCrossover(µSelection(), µSelection())) µReplace(off4)
5 off5 = µMutation(µSelection()) µCrtReplace(off5)
6 off6 = µCrossover(µSelection(), µSelection()) µAppend(off6)
7 next gen flag

In our implementation we have used an integer representation for encoding the values of the genes inside a MChro-
mosome as follows:

0 µCrossover
1 µMutation
2 µCrossMutation
0 µAppend
1 µReplaceWorst
2 µReplaceCurrent

By using this encoding, the previous chromosome C can be re-written as follows:
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Table 3: Possible evolutionary schemes, which can be obtained by various combination of the parameters for the
evolved EA.

Chromosome creation Population altering NextGen flag Obtained scheme
CrossoverMutation Append 0 GA
Mutation Append 1 Evolutionary Programming (EP)
Mutation ReplaceCurrent 1 - repeated (1+1) ES
CrossoverMutation ReplaceWorst 1 SSGA

Gene # Gene values
1 1 0
2 0 1
3 0 0
4 2 1
5 1 2
6 0 0

Note that the number of genes from a macro chromosome is equal to the number of individuals (µPopSize) from
the evolved EA population. The genes of the macro chromosome C encode different micro genetic operations. These
statements are actually executed during a micro EA generation.

For this representation of a macro GA chromosome, we can apply some standard macro recombination and macro
mutation operators. For instance, we can use the one-cutting point crossover and the weak mutation inspired from
binary representation [1].

Since our purpose is to evolve an entire EA, we have to add a wrapper loop around the genetic operations that
are executed during an EA generation. Moreover, each EA starts with a random population of individuals. Thus, the
program must contain some instructions that randomly initialize the first generation of the micro EA.

Having these parameters we can simulate a wide range of existing evolutionary schemes (see Table 3) and new
hybrid ones.

The µEA that corresponds to the instructions encoded in the macro chromosome C is given below:

Algorithm 4 Micro chromosome-program – a µpopulation with 6 individuals
RandomlyInitialization(µPop); // This operation is not encoded in the MGA chromosome
Fitness(µPop); // This operation is not encoded in the MGA chromosome
for g=1 to µNoOfGenerations do

off1 = µMutation(µSelection())a; µAppend(off1); // gene 1
off2 = µCrossover(µSelection(),µSelection()); µReplace(off2); // gene 2
off3 = µCrossover(µSelection(),µSelection()); µAppend(off3); // gene 3
off4 = µMutation(µCrossover(µSelection(),µSelection())); µReplace(off4); // gene 4
off5 = µMutation(µSelection()); µCrtReplace(off5); // gene 5
off5 = µCrossover(µSelection(),µSelection()); µAppend(off5); // gene 6
ConstructTheNewPopulation(µPop); // based on the flag value

end for
aThe µCrossover and µMutation are applied with µpc and µpm proabilities, respectively.

Remark : The initialization function, the for cycle, the sort and truncation functions will not be affected by the
genetic operators. These parts are kept intact during the search process.

3.1.5 Finding µpc and µpm

We have observed that µpm and µpc depend on the problem being solved (this assumption was later confirmed by
the values discovered for these parameters as shown in the experiments). In order to find which the values of these
parameters should be (for a specific problem) we have several options:

• to encode them in the MChromosome structure and to evolve them as all other genes. Using this approach we
can generally find local-optima values instead of global-optima ones.

• to check all possible values (with a given step) for µpm and µpc. For each such pair the algorithm is run and
the results are stored. The best values for µpm and µpc are finally shown. There are several problems with this
method too: using a too small step, the running time (for checking all combinations) would be too high. Using
a too large step, some good values could be missed.
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We have tested both methods and we have decided to stick with the second one. The step for searching µpm and
µpc is 0.1. Thus 100 pairs, over the discrete space {0.1, 0.2, . . . , 0.9, 1.0} × {0.1, 0.2, . . . , 0.9, 1.0} must be searched. In
order to reduce the computational cost generated by this approach we have implemented the following strategy for
finding µpm and µpc:

• We explore the µpm and µpc in 2 loop instructions (written below in C language): for (µpc = 1; µpc > 0;
µpc -= 0.1) for (µpm = 0; µpm <= 1; µpm += 0.1)

• Basic idea is that if the fitness of the individual having the µpm and µpc set in this loop are several times larger
than the best fitness of the same individual obtained with some already explored values for µpm and µpc, it
makes no sense to compute the fitness of that individual with the next values of µpm, because more than sure
we will not have a too big drop in the fitness value.

• Actually we have applied the following strategy, which we have deduced after some experiments:

– skip the next 3 values for µpm if the fitness (current individual, µpm, µpc) is 20 times bigger than the best
fitness of the same individual discovered so far.

– skip the next 2 values for pm if the fitness (current individual, µpm, µpc) is 10 times bigger than the best
fitness of the same individual discovered so far.

– skip the next value for pm if the fitness (current individual, µpm, µpc) is 5 times bigger than the best fitness
of the same individual discovered so far.

Less than 1/3 combinations were actually explored in this way. Thus, the running time has increased, in average,
only 30 times and not 100 times. This schema was deduced experimentally.

3.2 Fitness assignment

We deal with EAs at two different levels: a micro level representing the evolutionary algorithm encoded in a GA
chromosome and a macro level GA, which evolves program-individuals. Macro level GA execution is bounded by the
known rules for GAs (see [2]).

In order to compute the fitness of a GA individual we have to compute the quality of the evolved µEA encoded in
that chromosome. For this purpose the µEA is run on the particular problem which is being solved.

Roughly speaking, the fitness of a macro individual equals the fitness of the best solution generated by the EA
encoded in that GA chromosome. It is very likely that successive runs of the same µEA should generate completely
different solutions, since the µEA encoded in a Mchromosome uses pseudo-random numbers. This stability problem
is handled in a standard manner: the µEA encoded in a Mchromosome is executed (run) more times (100 µruns are
in fact executed in all the experiments performed in order to evolve µEAs for function optimization) and the fitness
of a Mchromosome is the average of the fitness of the best µchromosome from the last generation of the µEA over all
the runs.

The optimization type (minimization/maximization) of the macro level GA is the same as the optimization type
of the micro level EA. In our experiments, we have employed a minimization relation (finding the minimum of a
function).

3.3 The model used for evolving EAs

We use the steady-state evolutionary model [5] as an underlying mechanism for our macro GA implementation. The
GA starts by creating a random population of MIndividuals (programs). The following steps are repeated until a
given number of generations is reached: two parents are selected using a standard selection procedure; the parents
are recombined in order to obtain an offspring; the offspring is considered for mutation; the offspring off replaces the
worst individual worst in the current population if off is better than worst (see the Algorithm 5).

3.3.1 Macro Initialization

Each value of a gene from a macro chromosome will be initialize with a random value from {0, 1, 2} set. The flag is
randomly chosen from {0, 1} set.

3.3.2 Macro Crossover

An example of a macro crossover taking two parents and generating an offspring is given below (the flag is randomly
choosen from one of the parents):
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Algorithm 5 The macro GA used for evolving µEAs
RandomlyInitialization(MPop);
Fitness(MPop);
for g=1 to MNoOfGenerations * MPopSize do

p1 = MSelection(MPop);
p2 = MSelection(MPop);
MCrossover(p1, p2, off );
MMutation(off );
MFitness(off ); // Run the EA encoded in the off in order to solve a particular problem
if off is better than the worst individual (worst) from MPop then

Replace worst with off
end if

end for

1 0 2 0 1 0 00 1 0 1 1 2
=⇒

1 0 1 0 1 2 00 1 2 0 0 1
1 2 1 0 1 2 11 0 2 0 0 1

The MCrossover operator is applied with a specific probability (Mpc). If the conditions for crossover are not met,
the offspring is the copy of the best parent.

3.3.3 Macro Mutation

Each gene of a macro chromosome is changed (with a given probability Mpm) into another value (randomly generated)
from {0, 1, 2} set. The flag can also be mutated. A mutation example is given below:

1 0 1 0 1 2 1 =⇒ 0 0 0 2 1 2 10 2 0 0 0 1 2 2 1 1 0 1

3.4 Complexity

The complexity of the proposed method is bounded by the known rules for an EA.
The complexity of the evolved µEA can be described by the equation:

C(µEA, µpc, µpm) = O(NumberOfµGenerations× µPopSize× Cf ) (1)

where Cf is the function evaluation complexity.
The complexity of the GA used for evolving µEAs is given by the formula:

C(GA) = O(NumberOfMGenerations×MPopSize× C(µEA)×NumberOfµRuns×
×CardinalityOfµpcV alueSet× CardianlOfµpmV alueSet)

(2)

The C(µEA) factor was introduced here because we need to compute the fitness of each newly evolved micro
program, which actually means that we have to repeatedly run the micro algorithm whose complexity is described by
Equation (1).

The process of evolving algorithms is a complex task, which requires many computational resources. This is so
because we need to assess the performance of each evolved EA by applying it to a particular problem (in our case,
function optimization).

4 Test Functions

Ten test problems f1− f10 (given in Table 4) are used in order to asses the performance of the evolved EA. Functions
f1−f6 are unimodal test function. Functions f7−f10 are highly multi-modal (the number of the local minima increases
exponentially with the problem dimension [28]). In all the experiments the definition domain of every function has
ten dimensions (n = 10).
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Table 4: Test functions used in our experimental study. The parameter n is the space dimension (n = 10 in our
numerical experiments for evolving EAs) and fmin is the minimum value of the function.

Test function Domain fmin

f1(x) =
n∑

i=1

(i · x2
i ). [-10, 10]n 0

f2(x) =
n∑

i=1

x2
i . [-100, 100]n 0

f3(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi|. [-10, 10]n 0

f4(x) =
n∑

i=1

(
i∑

j=1

x2
j

)
. [-100, 100]n 0

f5(x) = max{|xi|, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1∑
i=1

100 · (xi+1 − x2
i )

2 + (1− xi)2. [-30, 30]n 0

f7(x) = 10 · n +
n∑

i=1

(x2
i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e−b

√
n∑

i=1
x2

i

n − e
∑

cos(c·xi)
n + a + e. [-32, 32]n a = 20, b = 0.2, c = 2π. 0

f9(x) = 1
4000 ·

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n∑

i=1

(−xi · sin(
√
|xi|)) [-500, 500]n -n∗ 418.98

5 Numerical Experiments

Several numerical experiments for evolving EAs are performed in this section. Several EAs for function optimization
are evolved: some of them use the real encoding for the micro chromosomes and the other ones use the binary
representation for the micro individuals. The evolved EAs are compared with standard EAs for several well-known
optimization problems.

The section is structured as follows: EAs with real encoding are evolved in Section 5.1. Next Section, 5.2, contains
a comparison between the evolved EA and three standard EAs (a generational, a steady state GA and an EP-like
scheme). Next sections (5.3 and 5.4) are dedicated to the binary encoding: a set of experiments (similar to those from
real encoding) are performed for binary representation.

5.1 Evolving EAs with real encoding

There is a wide range of Evolutionary Algorithms that can be evolved by using the proposed technique. Since the
evolved µEA has to be compared with another algorithm (such as standard GA [2], steady state GA [22] or EP [28]),
the chromosome representation and the parameters of the evolved µEA should be similar to those of the algorithm used
for comparison. In the next experiment, we will compare the performance of the evolved µEA with the performance
of several classical EAs and 50 individuals and 50 generations will be used for this purpose.

The solutions generated by the µEA are represented using real values [2]. Thus, each chromosome of the evolved
µEA is a fixed-length array of real values. In what follows, we will denote the µEA evolved in this experiment by
Real-based evolved EA or shortly rEvoEA.

A short description of real encoding and the corresponding genetic operators is given in Table 5.
The parameters of macro GA are given in Table 6. The macro chromosome contains the genetic operations

performed in the µEA and their order. Note again that the length of a macro chromosome is equal to the number of
individuals from the µpopulation (since each operation is a MChromosome creates a new µ individual).

This experiment serves our purpose of studying the performance of the evolved EA along a number of macro
generations.

Each function from Table 4 was used as training problem. Consequently 10 different EAs have been evolved (see
Table 7).

By looking at the evolved EAs we can deduce the followings:

• pm and pc generally depend on the problem being solved. This is not good and reduces the generalization ability.
The evolved EAs could depend strictly on the problem being solved.

• Crossover followed by mutation is the predominant operation. In some cases (function f7) no single mutation
(the operation which has code 1 in our notation) is performed. This suggests that CrossMutation is better in
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Table 5: A short description of the real encoding.

Function to be optimized f :[MinX, MaxX ]n → <
Individual representation x = (x1, x2, . . . , xn), where xi ∈ [MinX, MaxX ], for i=1, 2, . . ., n
Initialization Randomly
Selection Binary tournament
Arithmetical
Recombination
with α = 0.5

parent1 – x = (x1, x2, . . . , xn)
parent2 – y = (y1, y2, . . . , yn)
offspring – o = (x1+y1

2 , x2+y2
2 , . . . , xn+yn

2 )
Gaussian Mutation with
σ = 0.01

the parent – x = (x1, x2, . . . , xn)
the offspring – o = (x1 + N1(0,σ), x2 + N2(0,σ), . . . , xn + Nn(0,σ))a

awhere Ni(µ, σ) is a function that generates a normally distributed one-dimensional random number with mean µ and standard deviation
σ. The index i indicates that the random number is generated for each value of i

Table 6: Parameters of the macro GA algorithm used for Experiment 1.

Parameter Value
Number of generations 100
Population size 100
Crossover type One cutting point crossover
Crossover probability 0.8
Mutation type Strong Mutation
Mutation probability 0.1
Selection Binary tournament

most cases than single Cross or single Mutation. This also suggests that the algorithms driven by fixed step
mutation are not as good as those performing both crossover and mutation are.

• If the µpm is high (see functions f5, f6) more single mutations appear in the evolved EAs. This suggests a
relationship between number of performed operations and the variation probabilities.

• ReplaceWorst is the major population altering operation for 8 problems out of 10. This suggests that a Steady-
State like algorithm is better for most cases.

• ReplaceCurrent also appear in many of the evolved algorithms, which suggests that the strategy which implies
offspring replacing the parent could lead to good results too.

Figure 1 presents the evolution of the performance of the best chromosome from the macro-GA population along
with the number of macro generations. The average fitness was also given.

Figure 1 shows that the macro GA is able to evolve an EA in order to solve the optimization problems. The quality
of the evolved EA improves as the search process advances (Figure 1 shows the improvements of the best rEvoEA
along with the number of generations).

5.2 Comparing EAs with real encoding

This experiment serves our purpose of comparing the best evolved µEA obtained in the previous experiment with
several well-known schemes (steady-state GA , a standard GA and an Evolutionary Programming-like scheme – see
Algorithms 6, 7 and 8).
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Figure 1: Relationship between the fitness of the best and average individual in each generation (of the macro GA)
and the number of macro generations.
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Table 7: Evolved EAs with real representation. For each chromosome we have given 2 lines: first line contains the
code for chromosome creation operations (see Section 3.1.1) and the second line represents the population altering
operations (see Section 3.1.2). The next gen flag was 1 in all experiments and we have not given it here anymore.

Fc Operations pc pm

f1
12122022202222222220222222202222222222222222012202 1.0 0.211111112111202121211112210001111111112221110011101

f2
22222222002222122211222222222222022222221222222222 1.0 0.211111111102111121111110111100101111100100111020010

f3
22022222022022220202202022222202222220222222222222 1.0 0.211111210121022010001010122211111010200011111010100

f4
22222202222222222222222222222222122212222221222121 1.0 1.012210211211212222111110110111101011101001000200100

f5
20222202222122022021212212222222112222112122222122 1.0 0.511112101111110100011211020110101212001120001110111

f6
12212122222222120210222220001102111222122222011121 0.8 0.411120022022022200021012010211101020111000020102100

f7
02222222222000200222222220002000220222000222220202 1.0 0.220220220222212022201200220222222021202020200200002

f8
22222221222222012220222022222210222222222002222222 1.0 0.311111111111211011111121012111110001112111111000100

f9
02202002222222000102222222200200202222022202012121 1.0 0.211111112111122101101111111101010100211101000111110

f10
12210122122212211012020112222101102201022100201121 0.4 0.110000020220002222220021002021222122222022220022011

Algorithm 6 Steady-state GA - ssGA
Randomly initialize the population µPop;
Evaluate the population µPop;
for g=1 to NoOfµGenerations × µPopSize do

p1 = µSelection();
p2 = µSelection();
off = µCrossover(p1, p2, pc);
off∗ = µMutation(off, pm);
µFitness(off∗);
if off∗ is better then the worst individual worst from µPop then

µReplace(off∗);
end if

end for

Algorithm 7 standard GA - GA
Randomly initialize the population µPop;
Evaluate the population µPop;
for g=1 to NoOfµGenerations do

Copy best to NextPop;
for i=2 to µPopSize do

p1 = µSelection();
p2 = µSelection();
off = µCrossover(p1, p2, pc);
off∗ = µMutation(off, pm);
µFitness(off∗);
µAppend(off∗, NextPop);

end for
µPop = NextPop

end for
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Algorithm 8 Evolutionary Programming - EP
Randomly initialize the population µPop;
Evaluate population µPop;
for g=1 to NoOfµGenerations do

offspringPop = {};
for i=1 to µPopSize do

off∗ = µMutation(µPop[i], pm);
µFitness(off∗);
Add off to offspringPop;

end for
µPop = Choose best µPopSize individuals from µPop U offspringPop;

end for

In this experiment all involved algorithms use a real representation. Therefore, we will denote these algorithms by:
rSSGA, rGA, rEP and rEvoEA.

In order to make a fair comparison we have to perform the same number of function evaluations in all compared
algorithms. The µEA uses a population of 50 individuals which are evolved during 50 generations. Thus, for rSSGA,
rGA and rEP we use the same number of function evaluations (µNoGenerations × µPopSize). Both algorithms
rSSGA and rGA have been run with all possible values for pm and pc optimized as described in section 3.1.5 and the
best values are shown. rEP uses only mutation, thus only pm is searched. For rEvoEA the values for µpm and µpc

have been discovered in the previous experiment.
The values of real-encoding parameters are presented in Table 8.

Table 8: Parameters of a real-encoding EA.

Parameter Value
Population sizea 50
Individual encoding fixed-length array of real valuesb

Number of generations 50
Selection Binary Tournament
Crossover type Uniform arithmetical crossover with α = 0.5
Mutation Gaussian mutation with σ = 0.01

aNote that the population size also represents the number of genes from the first part of a macro GA chromosome used in order to
evolve the real-based µEA

bin fact, 10 values are used for each chromosome (the problem size was fixed to n = 10)

The results of these comparisons are presented in Table 9.

Table 9: Results of applying the Steady-state GA (rSSGA), the generational GA (rGA), the Evolutionary Programming
(rEP) and the Evolved EA (rEvoEA) for the considered test problems. All the algorithms use real representation for
their chromosomes. Avg stands for the mean best solution over 100 runs and StdDev stands for the standard deviation
over 100 runs. Best results are written with bold font.

Fc
rSSGA rGA rEP rEvoEA

pc pm Avg ± StdDev pc pm Avg ± StdDev pm Avg ± StdDev pc pm Avg ± StdDev

f1 1.0 0.2 0.001 ± 0.003 1.0 0.2 0.018 ± 0.022 1.0 25.844 ± 13.793 1.0 0.2 0.002 ± 0.013
f2 0.9 0.2 0.103 ± 0.097 1.0 0.2 0.864 ± 0.666 1.0 2,316.550 ± 1,056.630 1.0 0.2 0.094 ± 0.126
f3 0.9 0.2 0.073 ± 0.209 1.0 0.1 0.210 ± 0.220 1.0 17.844 ± 6.763 1.0 0.2 0.067 ± 0.043
f4 1.0 1.0 23.680 ± 12.083 1.0 0.9 63.474 ± 42.915 1.0 3,206.240 ± 1,592.620 1.0 1.0 22.225 ± 16.700
f5 1.0 0.4 0.573 ± 0.125 1.0 0.3 0.963 ± 0.787 0.9 23.547 ± 7.593 1.0 0.5 0.556 ± 0.370
f6 0.8 0.3 89.728 ± 4.807 1.0 0.6 103.483 ± 108.714 1.0 621388.000 ± 718962.000 0.8 0.4 45.278 ± 365.192
f7 1.0 0.1 7.450 ± 4.807 1.0 0.2 4.812 ± 1.977 1.0 40.782 ± 9.513 1.0 0.2 4.611 ± 2.824
f8 1.0 0.2 0.243 ± 0.140 1.0 0.2 0.832 ± 0.445 1.0 14.512 ± 2.678 1.0 0.3 0.214 ± 0.275
f9 0.8 0.1 0.384 ± 0.227 1.0 0.2 0.739 ± 0.108 1.0 20.031 ± 11.123 1.0 0.2 0.340 ± 0.177
f10 0.1 0.7 -2767.1 ± 396.731 0.1 0.8 -2744.9 ± 323.010 0.9 -2857.1 ± 287.955 0.4 0.1 -2998.7 ± 367.357

Taking into account the average values, we can see that the evolved µEA performs significantly better than the
steady-state GA in 9 cases out of 10 (see Table 9). We relate the results of rEvoEA only to the results of rSSGA
because for all the problems the SSGA outperforms the other classic EAs (GA and EP).

In order to determine whether the differences between the evolved µEA and the steady-state GA are statistically
significant, we use a t-test with 95% confidence. Only the average solution in each run has been taken into account
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for these tests. Before applying the t-test, an F -test has been used for determining whether the compared data have
the same variance. The P -values of the two-tailed t-test and of the F -test are given in Table 10.

Table 10: P -values (in scientific notation) of a t-test with 99 degrees of freedom in order to compare the rEvoEA with
the classical GAs. All the algorithms use the real representation.

Function rEvoEA vs. rSSGA
F -Test t-Test

f1 8.26E-20 5.58E-02
f2 6.85E-02 1.44E-01
f3 2.93E-21 2.49E-01
f4 3.24E-02 2.66E-01
f5 3.28E-12 1.70E-02
f6 4.46E-79 2.40E-05
f7 2.92E-04 1.23E-03
f8 6.51E-06 3.02E-01
f9 8.49E-02 4.85E-01
f10 5.92E-01 1.58E-01

Table 10 shows that the difference between the rEvoEA and the rSSGA is statistically significant (P < 0.05) for
the first 9 problems.

5.3 Evolving EAs with binary encoding

Several Evolutionary Algorithms using binary encoding for function optimization are evolved in this experiment. For
training purposes we use again all the test problems described in Table 4. Each micro chromosome of the evolved EA
is a fixed-length array of binary strings. For each dimension, we have used 30 bits for representation. The values of
crossover and mutation probabilities (µpc and µpm) are optimised as described in section 3.1.5. A short description
of binary encoding and the corresponding genetic operators is given in Table 11.

The parameters of the macro GA are the same as those used in Experiment 5.1 (the values for these parameters
are presented in Table 6). The others micro parameters are the same as those used in Experiment 5.1: 50 µindividuals
are evolved during 50 µgenerations.

We have obtained 10 different algorithms listed in Table 12. Based on the structure of the evolved EAs we can
remark that:

• pm and pc are more stable (at least at this precision) compared with those from real encoding. We have noticed
(results not shown here) that increasing the precision of pm can lead to better results. However, searching pm

with a better precision will also increase the running time for evolving EAs (because all values for pc and pm are
searched).

• Major variation operations are Mutation and CrossMutation. This is different from real encoding where the
major operation was CrossMutation. Mutation is more powerfully in binary encoding and this is why it appears
more times than the real encoding case.

• Major population altering operations are ReplaceWorst and ReplaceCurrent. This suggest again that Steady-
State strategies are generally better than the others.

In this experiment we are again interested in observing the improvement trend of the evolved EA during the search
process. The effectiveness of our approach can be seen in Figure 2. We depicted the fitness evolution for the best
macro individual in a run and the average fitness. We can see in Figure 2 that the macro GA is able to evolve an EA
for solving optimization problems. The quality of the evolved EA improves as the search process advances.

5.4 Comparing EAs with binary encoding

This experiment serves our purpose of comparing the Evolved EA (obtained in Experiment 5.3) with a steady state
GA, a standard GA and an EP-like scheme. For a fair comparison, we must perform the same number of function
evaluations.

Because the compared algorithms use the same binary representation of individuals, we will denote them by using
the terms bEvoEA, bSSGA, bGA and bEP.

Both algorithms bSSGA and bGA have been run with all possible values for pm and pc optimized as described in
section 3.1.5 and the best values are shown. bEP uses only mutation, thus only pm is searched. For bEvoEA the values
for µpm and µpc have been discovered in the previous experiment.

The results of this experiment are presented in Tables 14.

17



Table 11: A short description of binary encoding.

Function to be
optimized

f :[MinX, MaxX ]n → <

Individual
representation

x = (x11, x12, . . . , x1L)
(x21, x22, . . . , x2L)
. . .
(xn1, xn2, . . . , xnL)

where xij is a binary value

Uniform
Crossover

parent1 parent2 offspring
x = (x11, x12, . . . , x1L) y = (y11, y12, . . . , y1L) off = (o11, o12, . . . , o1L)

(x21, x22, . . . , x2L) (y21, y22, . . . , y2L) (o21, o22, . . . , o2L)
. . . . . . . . .
(xn1, xn2, . . . , xnL) (yn1, yn2, . . . , ynL) (on1, on2, . . . , onL)

where P (oij = xij) = 0.5 and P (oij = yij) = 0.5, i = 1, n and j = 1, L

Bit-wise
Mutation

parent offspring
x = (x11, x12, . . . , x1L) off = (o11, o12, . . . , o1L)

(x21, x22, . . . , x2L) (o21, o22, . . . , o2L)
. . . . . .
(xn1, xn2, . . . , xnL) (on1, on2, . . . , onL)

where oij = 1− xij , i = 1, n and j = 1, L

Table 12: Evolved EAs with binary representation. For each chromosome we have given 2 lines: first line contains
the code for chromosome creation operations (see section 3.1.1) and the second line represents the population altering
operations (see section 3.1.2). The nextgen flag was 1 in all experiments and we have not given it here anymore.

Function Operations pc pm

f1
12202010121111010121110101012002101022002121012020 1.0 0.122112112201122211011202222011010121002012220111000

f2
12100110212021110200002200011221222012011201210202 1.0 0.121112101112212122112020102011211022212221122200021

f3
22020220002202122020020112200001022001222002100202 1.0 0.100021121222101001221201202100212001001100012200020

f4
20202101100010112000100112002220210122110212102120 0.9 0.120012011101220222112102121222210222101200101022112

f5
11001212120220110100201120201010012010012000112200 1.0 0.112211222210222210021202011211010122121112221010101

f6
01201010012020021011002221210110122020210022021110 1.0 0.111222012122212121222220211121122212112020000011002

f7
02120012022102220020110220000010122020021210102021 1.0 0.122222120211222121100210211001110001202100212210222

f8
11111202000111200112120101011020200201021210121020 1.0 0.121121101222112120101212120010112210112202000020210

f9
12220012122112002112001200110010000202100220001101 1.0 0.112112121112112221212211122201022100001002210002122

f10
02002122111221211102000012020212220022120022200022 1.0 0.101011010122211011002111001010222200212111121102122
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Figure 2: Relationship between the fitness of the best and average individual in each generation (of the macro GA)
and the number of macro generations.
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Table 13: Parameters of a binary-encoding EA.

Parameter Value
Population sizea 50
Individual encoding fixed-length array of binary string
Number of generations 50
Selection Binary Tournament
Crossover type Uniform crossover
Mutation Probabilistic bit-wise mutation

aPlease note that the population size also represents the number of genes from the first part of a macro GA chromosome used in order
to evolve binary-based EA

Table 14: Results of applying the Steady-state GA (bSSGA), the generational GA (bGA), the Evolutionary Pro-
gramming (bEP) and the Evolved EA (bEvoEA) for the considered test problems. All the algorithms use a binary
representation for their chromosomes. Avg stands for the mean best solution over 100 runs and StdDev stands for the
standard deviation over 100 runs. Best results are written with bold font.

Fc
bSSGA bGA bEP bEvoEA

pc pm Avg ± StdDev pc pm Avg ± StdDev pm Avg ± StdDev pc pm Avg ± StdDev

f1 0.1 0.9 11.52 ± 4.32 0.1 0.1 12.16 ± 5.85 0.1 6.94 ± 2.27 1.0 0.1 1.05 ± 1.10
f2 0.1 0.9 1038.9 ± 402 0.2 0.1 1329.4 ± 693.5 0.1 635.3 ± 244.3 1.0 0.1 97 ± 75.3
f3 1.0 1.0 4.87 ± 2.67 0.1 0.1 6.81 ± 2.11 0.1 5.18 ± 0.98 1.0 0.1 1.34 ± 0.80
f4 0.1 0.1 1963.6 ± 654.5 0.1 0.1 2824.2 ± 984.0 0.1 1809.0 ± 749.9 0.9 0.1 1082.6 ± 855.2
f5 0.1 0.9 19.40 ± 4.03 0.1 0.1 23.34 ± 5.66 0.1 17.66 ± 4.95 1.0 0.1 9.98 ± 4.51
f6 0.4 0.1 7,516 ± 6,519 0.1 0.1 225 ± 198 0.1 75374 ± 51226 1.0 0.1 4556 ± 18230
f7 1.0 1.0 35.01 ± 12.20 0.1 0.1 43.08 ± 8.92 0.1 29.59 ± 5.35 1.0 0.1 19.94 ± 7.64
f8 1.0 1.0 10.49 ± 2.32 0.2 0.1 11.29 ± 1.77 0.1 9.47 ± 1.16 1.0 0.1 4.69 ± 1.39
f9 0.2 0.1 10.38 ± 3.28 0.1 0.1 11.78 ± 4.55 0.1 6.46 ± 2.01 1.0 0.1 1.82 ± 0.90
f10 0.8 0.1 -3392 ± 191 0.3 0.1 -3235 ± 235 0.1 -3384 ± 165 1.0 0.1 -3878 ± 192

Taking into account the average values, we can see that the evolved µEA performs significantly better than the
steady-state GA in all cases (see Table 14). We relate the results of bEvoEA only to the results of bSSGA because
for all the problems the SSGA outperforms the other classic EAs (GA and EP).

In order to determine whether the differences between the evolved EA and the other EAs are statistically significant,
we use a t-test with 95% confidence. Only the average solution in each run has been taken into account for these tests.
Before applying the t-test, an F -test has been used in order to determine whether the compared data have the same
variance. The P -values of the two-tailed t-test and of the F -test are given in Table 15.

Table 15 shows that the difference between the evolved EA (bEvoEA) and the steady-state GA (bSSGA) is statis-
tically significant (P < 0.05) for 7 test problems.

6 Scalability of the proposed approach

We are interested to find if our approach still performs well if we modify some of its parameters. Of great interest would
be to see the outcome of the evolution for more generations and (very important) to see how the evolved algorithm
performs on more difficult test functions (with more dimensions). One important parameter cannot be modified: the
number of individuals in the evolved EA. This parameter has been fixed when we performed the evolution.

We start by running the algorithms on test problems with 30 dimensions. For the evolved EAs we keep both the
structure and parameters (pm and pc) unchanged. For the other algorithms, we have tested 2 versions: first we kept
fixed the pm and pc (as they were obtained in section 5.2 and 5.4) and secondly we have searched for specific values
for 30 dimensions. Results are given in tables 16 - 19.

We can see the following:

• the scalability of real-encoded evolved EAs is not very good. In almost all cases the SS is better than the evolved
one.

• the scalability of binary-encoded evolved EAs is a good one. In almost all cases the evolved EAs are better than
the SS.

Next we focus our attention on increasing the number of generations. We run all algorithms for 100 generations
(instead of only 50 as it was used during training purposes). The number of dimensions for the test functions is kept
to 10. Results are show in tables 20 and 21. We can see that:
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Table 15: P -values (in scientific notation) of a t-test with 99 degrees of freedom in order to compare the rEvoEA with
the classical GAs. All the algorithms use the binary representation.

Function bEvoEA vs. bSSGA
F -Test t-Test

f1 2.8E-75 3.7E-37
f2 1.0E-68 7.0E-38
f3 0.0000 0.0000
f4 0.5129 1.0E-10
f5 0.3653 0.0000
f6 4.9E-40 3.5E-11
f7 4.5E-05 1.5E-07
f8 1.5E-13 5.0E-42
f9 4.0E-49 1.4E-39
f10 0.6792 5.0E-19

Table 16: Results obtained by applying the algorithms for 30 dimensions. The evolved EAs (including pm and pc)
are kept unchanged. For the other algorithms the pm and pc are those discovered for 10 dimensions. Real encoding is
used. Results are averaged over 100 runs. Best results are written with bold font.

Fc
rEvoEA rSSGA rGA rEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 14.99 ± 11.99 6.59 ± 3.71 13.01 ± 8.48 1086.43 ± 180.52
f2 389.68 ± 388.69 141.30 ± 151.74 337.54 ± 200.60 34836.62 ± 3495.30
f3 8.33 ± 3.19 7.86 ± 3.22 10.61 ± 2.80 2538.49 ± 11096.59
f4 2925.86 ± 980.59 2485.63 ± 686.81 2441.67 ± 865.29 42413.58 ± 12250.50
f5 14.81 ± 3.38 13.24 ± 2.98 11.51 ± 2.93 59.85 ± 4.21
f6 34914.21 ± 35263.34 9397.77 ± 14892.95 5354.06 ± 4523.12 58804460.00 ± 13703559.45
f7 47.06 ± 15.09 32.07 ± 7.04 40.74 ± 13.56 259.04 ± 20.74
f8 5.67 ± 1.72 6.74 ± 2.89 5.89 ± 1.23 19.85 ± 0.34
f9 7.46 ± 3.32 8.55 ± 9.57 3.52 ± 1.45 309.74 ± 41.53
f10 -6101.75 ± 503.10 -6843.04 ± 619.35 -6553.54 ± 597.96 -6509.22 ± 446.39

Table 17: Results obtained by applying the algorithms for 30 dimensions. The evolved EAs (including pm and pc) are
kept unchanged. For the other algorithms the pm and pc are those discovered for 10 dimensions. Binary encoding is
used. Results are averaged over 100 runs. Best results are written with bold font.

Fc
bEvoEA bSSGA bGA bEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 322.25 ± 106.67 984.54 ± 136.04 863.47 ± 143.00 669.90 ± 78.67
f2 11041.06 ± 3021.06 31242.27 ± 3073.32 26230.18 ± 4285.16 19862.04 ± 2313.98
f3 26.19 ± 6.13 85.28 ± 25.45 92.17 ± 41.03 63.53 ± 6.37
f4 36822.69 ± 8173.60 58049.31 ± 7984.54 42632.10 ± 7860.73 35264.27 ± 5549.15
f5 55.83 ± 4.29 72.80 ± 3.46 64.50 ± 4.36 58.78 ± 3.60
f6 13468551 ± 4934092 84253970 ± 15906015 47689732 ± 12510278 29936396 ± 6077607
f7 153.06 ± 29.43 242.41 ± 19.83 282.94 ± 23.83 248.00 ± 13.95
f8 15.06 ± 1.09 19.06 ± 0.31 18.69 ± 0.46 17.80 ± 0.50
f9 93.37 ± 25.08 143.58 ± 28.79 229.12 ± 43.75 182.38 ± 24.13
f10 -6113.42 ± 367.47 -4153.17 ± 374.73 -5794.54 ± 399.63 -6478.69 ± 354.87
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Table 18: Results obtained by applying the algorithms for 30 dimensions. The evolved EAs (including pm and pc) are
kept unchanged. For the other algorithms the pm and pc are are searched again (over 30 dimensions). Real encoding
is used. Results are averaged over 100 runs. Best results are written with bold font.

Fc
rEvoEA rSSGA rGA rEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 14.99 ± 11.99 2.89 ± 1.49 6.30 ± 2.84 1055.56 ± 193.69
f2 389.68 ± 388.69 36.40 ± 13.74 106.59 ± 35.57 33720.94 ± 4597.59
f3 8.33 ± 3.19 4.72 ± 1.22 6.34 ± 1.21 384.21 ± 1250.23
f4 2925.86 ± 980.59 2659.31 ± 883.29 2249.41 ± 805.31 42654.56 ± 9039.93
f5 14.81 ± 3.38 10.50 ± 2.97 9.80 ± 2.43 59.48 ± 3.84
f6 34914.21 ± 35263.34 1624.82 ± 597.37 4340.87 ± 3595.83 138793848.00 ± 31283454.66
f7 47.06 ± 15.09 31.31 ± 6.28 39.18 ± 9.24 242.66 ± 19.14
f8 5.67 ± 1.72 3.25 ± 0.27 4.13 ± 0.52 19.49 ± 0.22
f9 7.46 ± 3.32 1.36 ± 0.09 2.08 ± 0.66 299.69 ± 40.65
f10 -6101.75 ± 503.10 -6917.50 ± 624.77 -6586.37 ± 617.82 -6582.71 ± 415.56

Table 19: Results obtained by applying the algorithms for 30 dimensions. The evolved EAs (including pm and pc) are
kept unchanged. For the other algorithms the pm and pc are searched again (for 30 dimensions). Binary encoding is
used. Results are averaged over 100 runs. Best results are written with bold font.

Fc
bEvoEA bSSGA bGA bEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 322.25 ± 106.67 466.88 ± 84.59 840.94 ± 169.53 649.81 ± 89.05
f2 11041.06 ± 3021.06 15409.20 ± 2346.90 25653.43 ± 3819.48 20486.54 ± 2692.91
f3 26.19 ± 6.13 42.88 ± 4.85 101.87 ± 82.52 64.26 ± 5.77
f4 36822.69 ± 8173.60 31756.59 ± 4916.20 43192.23 ± 6975.87 36625.20 ± 5498.46
f5 55.83 ± 4.29 54.41 ± 3.53 65.36 ± 3.20 56.94 ± 4.01
f6 13468551 ± 4934092 18737664 ± 4741336 44010717 ± 16175841 29151356 ± 6437101
f7 153.06 ± 29.43 225.60 ± 15.85 285.71 ± 23.80 248.07 ± 13.89
f8 15.06 ± 1.09 16.99 ± 0.64 18.67 ± 0.53 17.88 ± 0.51
f9 93.37 ± 25.08 141.41 ± 22.71 235.88 ± 39.94 190.00 ± 19.24
f10 -6113.42 ± 367.47 -7769.00 ± 407.01 -5733.18 ± 500.40 -6463.09 ± 325.94

• real-encoded evolved EAs scale reasonably well. In half of the cases, the evolved one is better than SS.

• binary-encoded evolved EAs scale better. In 7 cases (out of 10) the evolved EAs are better than the SS.

7 Comparing the techniques for evolving EAs

In this section we compare the results obtained with the current evolved EA and with several other evolved EAs which
were reviewed in section 2 or proposed in [20].

Unfortunately, we cannot numerically compare our results with all previous attempts because the experimental
conditions are too different. For instance the EA designed using the approach reviewed in section 2.1 contains 43
individuals (whereas the current approach contains 50).

The method that we can compare with is one based on MEP from section 2.2. The full-EAs (see section 2.2.1) were
never too complex to compete with a human-designed one. The most complex design contains less than 100 function
evaluations. The current approach performs 2500 function evaluations.

What was left was the kernel-generation with MEP (see section 2.2.2). Table 22 shows the results generated with
the current method and that generated with the method from section 2.2.2. Both EAs use real representation with
other parameters shown in Table 8. We can see that in all the cases the average values of EAs evolved with the current
method are better than those generated with the method proposed in [19]. In all the cases the current method is
better than the one proposed in [20].

Note that the comparison is still not a perfect one: in [19] only one EA was evolved (by using f1 as training
problem). In the current approach, we used each function as training, thus generating 10 different EAs.

8 Generalisation ability

The algorithms obtained in section 5 were trained on a single problem. Here we investigate the generalisation ability
of these algorithms by testing them against all other test problems. The parameters of algorithms and test problems
were set in section 5.

The results are presented in Tables 23 and 24 for real and binary representation, respectively.
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Table 20: Results obtained by applying the algorithms for 100 generations. The evolved EAs (including pm and pc) are
kept unchanged. For the other algorithms the pm and pc are those from section 5.2. Test problems with 10 dimensions
are used. Real encoding is employed for all algorithms. Results are averaged over 100 runs. Best results are written
with bold font.

Fc
rEvoEA rSSGA rGA rEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 0.0003 ± 0.0002 0.0002 ± 0.0001 0.0042 ± 0.0019 1.0679 ± 1.0375
f2 0.0170 ± 0.0093 0.0199 ± 0.0107 0.3347 ± 0.1181 26.3593 ± 20.1064
f3 0.0230 ± 0.0082 0.0199 ± 0.0075 0.0524 ± 0.0110 6.6526 ± 5.0684
f4 6.7329 ± 2.6164 8.6817 ± 2.2539 18.2645 ± 8.5138 646.3822 ± 477.3250
f5 0.4951 ± 0.0934 0.4960 ± 0.1101 0.5640 ± 0.0853 6.4036 ± 4.6080
f6 65.0598 ± 165.4201 29.5757 ± 61.9379 65.5823 ± 71.4260 3933.4123 ± 8064.9362
f7 4.9385 ± 1.7837 7.7634 ± 3.2533 4.6172 ± 1.7471 41.2092 ± 9.4799
f8 0.0911 ± 0.0319 0.0615 ± 0.0205 0.3800 ± 0.0853 4.7604 ± 2.8902
f9 0.4254 ± 0.1150 0.0997 ± 0.0487 0.6392 ± 0.1021 1.2266 ± 0.2315
f10 -2549.5004 ± 348.9728 -2706.6062 ± 299.8896 -2647.9632 ± 324.4656 -2854.1804 ± 282.0964

Table 21: Results obtained by applying the algorithms for 100 generations. The evolved EAs (including pm and pc) are
kept unchanged. For the other algorithms the pm and pc are those from section 5.4. Test problems with 10 dimensions
are used. Binary encoding is employed for all algorithms. Results are averaged over 100 runs. Best results are written
with bold font.

Fc
bEvoEA bSSGA bGA bEP

Avg ± StdDev Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 0.49 ± 0.44 59.95 ± 13.29 5.74 ± 2.96 1.62 ± 0.51
f2 42.79 ± 31.64 5429.71 ± 1264.15 592.90 ± 247.16 154.31 ± 52.98
f3 1.10 ± 0.53 21.26 ± 2.85 4.61 ± 1.05 2.41 ± 0.50
f4 792.62 ± 708.48 649.25 ± 653.99 1708.31 ± 710.35 900.25 ± 591.38
f5 7.32 ± 3.15 36.52 ± 4.81 17.43 ± 5.06 8.86 ± 2.58
f6 1616.89 ± 3201.15 890.31 ± 860.07 60561.02 ± 78123.60 6338.45 ± 5589.27
f7 20.02 ± 5.68 72.73 ± 6.14 32.42 ± 7.36 20.78 ± 3.64
f8 4.00 ± 0.84 16.99 ± 1.01 9.31 ± 1.64 6.01 ± 0.84
f9 1.43 ± 0.45 1.32 ± 0.15 5.48 ± 2.80 2.35 ± 0.56
f10 -3678.03 ± 140.03 -3904.68 ± 147.47 -3467.97 ± 216.72 -3794.73 ± 144.09

Table 22: Comparing three different evolved EAs with real encoding. Best results are written with bold font.

Fc rEvoEA EvolvedMEP [19] Evolved EA [20]
Avg ± StdDev Avg ± StdDev Avg ± StdDev

f1 0.00002 ± 0.00002 0.12800 ± 0.40100 0.11800 ± 0.11300
f2 0.00212 ± 0.00214 27.10000 ± 39.00000 9.11000 ± 8.58000
f3 0.00448 ± 0.00338 0.25000 ± 0.36400 0.30800 ± 0.31300
f4 0.51300 ± 0.33700 38.30000 ± 58.20000 35.40000 ± 26.50000
f5 0.42000 ± 0.12000 3.00000 ± 2.31000 5.01000 ± 1.38000
f6 39.80000 ± 133.00000 340.00000 ± 993.00000 394.00000 ± 663.00000
f7 1.67000 ± 1.21000 1.86000 ± 1.58000 4.42000 ± 3.01000
f8 0.02490 ± 0.01350 2.78000 ± 1.76000 2.89000 ± 1.32000
f9 0.23000 ± 0.09290 0.50900 ± 0.34000 0.75300 ± 0.28800
f10 -1510.00000 ± 210.00000 -1010.00000 ± 172.00000 -1480.00000 ± 508.00000
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Table 23: Generalisation ability of the evolved EAs with real representation. The results are average over 50 runs.
Best results are written with bold font.

Train
vs. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

test

f1 0.00030 0.14443 0.00145 0.13874 61.29386 0.01037 0.00035 19.67479 125.05401 -1423.41734
f2 0.00026 0.13066 0.00090 0.12025 62.10773 0.00975 0.00026 19.72137 134.33953 -1410.41334
f3 0.00027 0.15211 0.00122 0.12681 60.92056 0.01169 0.00037 19.68650 128.44055 -1430.91641
f4 0.01618 6.60418 0.05961 6.19439 62.05084 0.58681 0.01593 19.70636 124.68388 -1345.73950
f5 0.00199 0.87686 0.00893 0.77453 60.88235 0.06880 0.00211 19.64946 125.86749 -1364.99698
f6 0.00141 0.72836 0.00571 0.55545 61.40751 0.05490 0.00146 19.71340 127.47548 -1321.11750
f7 0.00126 0.61725 0.00509 0.61667 62.72897 0.05378 0.00137 19.75456 131.64630 -1363.81673
f8 0.00050 0.24229 0.00238 0.20781 61.38994 0.01881 0.00054 19.68233 125.34925 -1405.54314
f9 0.00031 0.17288 0.00115 0.15795 59.76257 0.01150 0.00033 19.52938 124.30715 -1380.77104
f10 0.00860 56.01909 0.02596 16.35453 61.90936 0.69741 0.01526 19.67687 126.92789 -1360.43448

Table 24: Generalisation ability of the evolved EAs with binary representation. The results are average over 50 runs.
Best results are written with bold font.

Train
vs. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

test

f1 0.4144 1512.4206 1.6963 221.9874 59.0461 19.2511 0.5194 19.4762 120.3164 -1343.6610
f2 0.4040 4893.9964 1.4591 257.8150 61.1152 18.1578 0.5801 19.6270 127.4783 -1376.2629
f3 0.5910 3766.7472 1.7395 259.0765 62.6041 18.2763 0.6168 19.6613 125.5378 -1366.9854
f4 0.4473 1705.4259 1.9056 239.7223 60.7780 20.3249 0.5312 19.4822 118.9940 -1381.2192
f5 0.5059 2056.3808 1.9089 259.7646 61.4554 16.7482 0.4530 19.5351 123.0909 -1379.2464
f6 0.4193 2785.8952 1.9151 250.1698 61.4332 15.7238 0.6394 19.6449 126.6345 -1337.9972
f7 0.5716 3854.3255 1.9175 287.1736 61.6140 21.0453 0.6135 19.5125 124.3114 -1283.2350
f8 0.3592 1968.5952 1.5953 171.8165 61.9482 14.5021 0.3792 19.6418 129.6790 -1312.2322
f9 0.5723 2963.2558 1.5722 212.1393 62.6898 21.8680 0.6128 19.6566 130.0736 -1269.6699
f10 0.5762 1968.6867 1.9035 258.9360 61.5949 19.4772 0.5026 19.6981 129.8182 -1325.6952

The results form Tables 23 and 24 show that the evolved EAs can compete with standard schemes whose results
were already given in section 5. None of the evolved algorithms has seriously failed on any test functions. However,
none of the evolved algorithm is better than the standard schemes for all problems. For real encoding the algorithm
trained on f2 is better than Steady State on 6 functions (out of 10).

9 Non-numerical comparison between evolved algorithms

Here we make a non-numerical comparison among various techniques used in order to generate EAs by evolutionary
means (the proposed one and those described in section 2).

Several criteria could be considered in order to compare the mentioned techniques:

• Taking into account the number of EAs encoded in a macro chromosome we can observe that each LGP or GA
chromosome encodes a single EA. This is different from the MEP approach where each chromosome encodes
multiple EAs. Even in that case, the mechanism of encoding multiple solutions in a single MEP chromosome
is only used for evolving full EAs. When evolving the EA pattern, only the best solution encoded in the MEP
chromosome is taken into account.

• The complexity of the evolved algorithms is quite different. In the MEP-based approach used for evolving EAs
[18] an entire EA is evolved. It is a simple sequence of genetic instructions (no generations, no loops for filling
a population). In the LGP-based approach [15], as well as in the MEP-based approach (but only for evolving
some pattern involved in an EA) [19] and the GA-based model (the current one) most of the EA parts are kept
intact: we have generations and we have a loop which fills the new population etc.

• Another important observation regards the genetic operators employed by the evolved evolutionary algorithms.
In the GA-based model, the genetic operators only manipulate individuals from the current population. The
same mechanism is involved in the models for evolving EAs by using LGP [15] and for evolving some EA patterns
by using MEP [19], but it is different from the methods proposed in [18] whose operators manipulate individuals
taken from the set of all individuals created since the beginning of the search process. In other words, the
nature-inspired mechanism of “generations” is present in the current model and in those proposed in [15] and
[19].
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• Initialization – in the MEP-based approach proposed in [18] we could use the initialization operator anywhere
in the evolved algorithm. In the models proposed in [15], [19] and in the current approach this operator has
been removed from the set of operators that could appear in an evolved EA. Initialization is used only at the
beginning of the algorithm. However, that part is not subject to evolution.

• Selection – in the MEP-based approach used in [18] and in the LGP-based approach used in [15] the selection
operator has 2 fixed parameters (e.g. Selection 5, 2 ). In the current approach (and in the model used for evolving
EA patterns), a more general type of selection operator, which has no parameter, is used. This operator also
selects two random individuals and the output is the better of them, but is not bounded anymore by some fixed
positions in the population. Moreover, the model for evolving EA patterns is the following: the first gene or
the first two genes from a MEP chromosome must encode a selection operator (this restriction is asked for the
MEP chromosome representation and the terminal set composition - if the second operation is a mutation, than
the first one must be a selection and if the third operation is a crossover, then the first two operations must be
either two selections, or a selection and a mutation). These limitations were removed from the GA-based model:
the crossover and the mutation operators have embedded the selection operators/operator as parameters.

• Crossover – the parents that participate to the recombination process are selected on-fly, and not at some
previous steps (as in the case of the LGP-based model or the MEP-based approaches).

• Mutation – as with crossover, this operator perturbs an on-fly selected individual.

• Probabilities – the previous models have used fixed values for pc and for pm. The current model searches the
best values of these parameters.

• Approximate running times were given. A perfect measure cannot be given since the algorithms have been run
on different architectures ranging from 0.8GHz up to 2 GHz.

The similarities and the differences of the previously presented techniques are briefly presented in Table 25.

Table 25: A brief comparison of different models for evolving EAs.

Criteria LGP full MEP pattern MEP GA

How many EAs are encoded into a macro chromosome? one many one one
The micro population from which are manipulated the in-
dividuals considered for genetic operations

current initial current current

Place of the Initialization process into the µEA at the beginning anywhere at the beginning at the beginning
The position of the µindividuals considered for Selection fixed fixed random random
The position of the µindividuals considered for Crossover
and Mutation

fixed fixed fixed random

µpc and µpm fixed fixed fixed optimsied
Running time 1 day few hours few minutes 1 week

10 Discussion over the evolution of EAs

Our primary purpose was to check if the evolution could help us to design some complex EAs. It is already well-known
that evolution can generate new and unconventional designs. The antenna example is one of the best [31]. Another
good example are digital circuits [32]. We tried to do a similar thing for EAs. We put many of the ingredients of
the standard evolutionary schemes in the same pool and we tried to see if we can obtain something as good as the
standard schemes or even better.

The running time of the macro EA is huge (several days for each training problem). Note that this huge running
time was mainly due to the parameter sweep method used for finding good values for pm and pc from micro level.
Without parameter sweep the running time would have been only few hours.

However, we did these experiments only to discover a good structure for an EA or to find some general guidelines for
designing EAs for problems. After discovering that structure we do not need this power hunger algorithm anymore.
The meta Genetic Programming should not be used a problem solver method. It should be only used for testing
hypotheses or for generating better design for small cases from where we can easily generalize. From the results of our
experiments we can establish a set of rules that can be used when implementing an Ea for a particular problem:

• Multiple values for pm and pc must be tried, because these values might depend on the actual problem being
solved.

• Perform both crossover and mutation. Try to work with mutation only if the obtained results are not good.

• Use a steady-state scheme first. Try other schemes only if this one has failed in generating good results.
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No Free Lunch theorems [3] say that is impossible to construct an algorithm which performs better than all others
for all the problems. This is why we cannot hope to use our method for designing the best algorithm ever. From our
numerical experiments, we have already seen that the generalization ability of the evolved algorithms is not perfect.
There are some cases where the steady-state GA performed better than the evolved EA. Thus, our work does not
contradict the implications of the No Free Lunch theorems.

Another natural question is whether the order of performing genetic operations is important. What if only the
number of crossover and mutation is important and the order could be any? In order to prove that the order in which
genetic operations are performed is very important we have made a new experiment. We have kept fixed the number
of operators (the number of crossover, the number of mutations and so on) and we have generated 50 EAs having
random orders for executing the operations. More than that, none of the randomly generated orders can compete
with the evolved ones. This becomes obvious for binary encoding.

Other parameters were set similar to those from section 5. This experiment was performed for both chromosome
representations: real and binary. The results obtained in this experiment are presented in Tables 26 and 27.

Table 26: Random order for real representation. Best and Worst stands for the best and worst solution, respectively,
over 50 runs. Avg stands for the mean best solution over all the runs and StdDev stands for the corresponding standard
deviation. Problem dimension was n = 10 for all test functions.

Fc Random order - real
Best Worst Avg StdDev

f1 0.00030 0.00037 0.00033 0.00001
f2 0.01888 0.02223 0.02083 0.00068
f3 0.02418 0.02733 0.02571 0.00074
f4 7.38097 8.11577 7.70165 0.18925
f5 0.47830 0.49258 0.48597 0.00337
f6 66.27220 103.97700 85.46476 7.00653
f7 5.01692 5.51122 5.29459 0.09005
f8 0.09352 0.10162 0.09801 0.00177
f9 0.12537 0.13946 0.13127 0.00344
f10 -2656.53000 -2605.21000 -2638.46940 11.14979

Table 27: Random order for binary representation. Best and Worst stands for the best and worst solution, respectively,
over 50 runs. Avg stands for the mean best solution over all the runs and StdDev stands for the corresponding standard
deviation. Problem dimension was n = 10 for all test functions.

Fc Random order
Best Worst Avg StdDev

f1 0.3977 0.5351 0.4749 0.0273
f2 39.6482 48.6247 44.0638 2.2151
f3 0.8989 1.0794 1.0126 0.0427
f4 798.3820 922.3890 869.5380 31.4641
f5 6.7164 7.2041 6.9713 0.1162
f6 1922.7800 2426.9100 2159.5730 116.4130
f7 17.6990 20.6056 19.1313 0.5796
f8 3.4865 3.9906 3.7493 0.1061
f9 1.2956 1.4260 1.3716 0.0329
f10 -3909.9800 -3838.1800 -3877.7140 14.2982

What we can see in Tables 26 and 27 is that order is important. There are big differences between the best and
worst order.

11 Further work

There are some other questions about the Evolved Evolutionary Algorithms that should be answered. Some of them
are:

• Which is the optimal selection procedure? In this paper we have used binary tournament, but other selection
strategies could be of interest as well. For instance, q-tournament (q > 2) could be used instead of its binary
counterpart. In this case, another parameter (q) should be evolved.
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• Are all the genetic operators suitable for the particular problem that is being solved? A careful analysis regarding
the genetic operators used should be performed in order to obtain the best results. The usefulness/uselessness of
the genetic operators employed by the GA has already been subject to long debates. Due to the NFL theorems
[4] we know that we cannot have ”the best” genetic operator that performs best for all the problems. However,
this is not our case, since our purpose is to find Evolutionary Algorithms for particular classes of problems.

• What is the optimal number of genetic instructions performed during a generation of the Evolved EA? In
the experiments performed in this paper we have used fixed length GA chromosomes. In this way, we have
forced a certain number of genetic operations to be performed during a generation of the Evolved EA. Further
numerical experiments will be performed by using variable length GA chromosomes, with the expectation that
this representation will find the optimal number of genetic instructions that have to be performed during a
generation for a particular problem.

Our next experiments will be focused on:

• Using a network of computers for performing larger experiments. This could clarify some of the observations
that we have made here.

• Using an extended set of training problems. This set should include problems from different fields, such as
function optimization, symbolic regression, TSP, classification etc. Further efforts will be dedicated to the
training of such algorithms, which could have increased generalization ability.

• Working with variable-size populations.

• Analyzing the relationship between the macro GA parameters (such as Population Size, Chromosome Length,
Mutation Probability etc.) and the ability of the evolved EA to find optimal solutions.

12 Conclusions

In this paper, GAs have been used in order to design Evolutionary Algorithms. A detailed description of the proposed
approach has been given, thus allowing researchers to apply the method in order to evolve Evolutionary Algorithms
that could be used for solving problems in their fields of interest.

The proposed model has been used in order to evolve Evolutionary Algorithms for function optimization. The
numerical experiments provided have emphasized the robustness and the efficacy of this approach. The evolved
Evolutionary Algorithms perform similarly and sometimes even better than some standard approaches in the literature.
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